Abstract
In order to predict the total magnetic field in the air gap of three-phase machines analytically, the following factors have to be taken into account: the winding spatial harmonics which are excited by the winding via the mean air gap permeance as well as the parametric spatial harmonic components of the air gap field which are excited by the variation of the air gap permeance. This applies particularly to salient pole synchronous machines which have considerably higher variations of the air gap permeance than induction machines due to their pole gap. Based on the FEM calculation results which are presented in Misir et al. (e&i, Elektrotech. Inf.tech., 132(1): 33–38, 2015), this paper provides an analytical approach for calculating both the contribution of a salient pole rotor to the total air gap permeance of salient pole synchronous machines and the total air gap permeance of salient pole synchronous machines without the need of finite element analysis.
Zusammenfassung
Zur Berechnung des vollständigen Feldspektrums von Drehfeldmaschinen ist es wichtig, neben den Wicklungsfeldern, die über einen konstanten magnetischen Leitwert erregt werden, auch die parametrischen Felder, d. h. die über die Schwankungen des Luftspaltleitwertes erregten Feldwellen, bestmöglich zu erfassen. Dies gilt insbesondere für Synchronmaschinen, die durch die Pollücke bzw. Erregernutung gegenüber Induktionsmaschinen zusätzliche starke und noch dazu niederpolige Leitwertschwankungen aufweisen. Aufbauend auf den FEM-Berechnungsergebnissen in Misir et al. (e&i, Elektrotech. Inf.tech., 132(1): 33–38, 2015) wird in diesem Beitrag ein analytischer Ansatz sowohl zur Berechnung des Luftspaltleitwertes für den Läufer von Schenkelpolsynchronmaschinen als auch zur Berechnung des resultierenden Luftspaltleitwerts von Schenkelpolsynchronmaschinen vorgestellt.




















Similar content being viewed by others
References
Misir, O., Dobbert, F., Ponick, B. (2015): Combined analytical-numerical method for the air gap permeance calculation of the rotor of a salient pole synchronous machine. E&I, Elektrotech. Inf.tech., 132(1), 33–38.
Braunisch, D., Ponick, B., Bramerdorfer, G. (2013): Combined analytical-numerical noise calculation of electrical machines considering nonsinusoidal mode shapes. IEEE Trans. Magn., 49(4), 1407–1415.
Jeong, I., Nam, K. (2015): Analytic expressions of torque and inductances via polynomial approximations of flux linkages. IEEE Trans. Magn., 51(7), 7209009.
Wang, X. H., Sun, Y. G., Ouyang, B., Wang, W. J., Zhu, Z. Q., Howe, D. (2002): Transient behaviour of salient-pole synchronous machines with internal stator winding faults. IEE Proc., Electr. Power Appl., 149(2), 143–151.
Wang, X., Chen, S., Wang, W., Sun, Y., Xu, L. (2002): A study of armature winding internal faults for turbogenerators. IEEE Trans. Ind. Appl., 38(3), 402–408.
Bi, D., Wang, X., Wang, W., Zhu, Z. Q., Howe, D. (2005): Improved transient simulation of salient-pole synchronous generators with internal and ground faults in the stator winding. IEEE Trans. Energy Convers., 20(1), 128–134.
Sun, Y., Wang, X., Wang, W., Ouyang, B. (2001): Comparison of transient and steady-state simulation methods on internal faults of salient-pole synchronous machine. In Fifth international conference on electrical machines and systems, ICEMS, Shenyang (pp. 102–106).
Chapariha, M., Therrien, F., Jatskevich, J., Dommel, H. W. (2015): Constant-parameter circuit-based models of synchronous machines. IEEE Trans. Energy Convers., 30(2), 441–452.
Cintron-Rivera, J. G., Foste, S. N., Strangas, E. G. (2015): Mitigation of turn-to-turn faults in fault tolerant permanent magnet synchronous motors. IEEE Trans. Energy Convers., 30(2), 465–475.
Chen, B., Yao, W., Chen, F., Lu, Z. (2015): Parameter sensitivity in sensorless induction motor drives with the adaptive full-order observer. IEEE Trans. Ind. Electron., 62(7), 4307–4318.
Sangsefidi, Y., Ziaeinejad, S., Mehrizi-Sani, A., Pairodin-Nabi, H., Shoulaie, A. (2015): Estimation of stator resistance in direct torque control synchronous motor drives. IEEE Trans. Energy Convers., 30(2), 626–634.
Kolbe, J. (1982): Analytische Nachbildung der numerisch ermittelten Feldverteilungen von mehrsträngigen Wicklungen in Asynchronmaschinen. Arch. Elektrotech., 65(1–2), 107–116.
Kolbe, J. (1983): Zur numerischen Berechnung und analytischen Nachbildung des Luftspaltfeldes von Drehfeldmaschinen. Ph.D. dissertation, Hochschule der Bundeswehr Hamburg, Germany.
Ponick, B. (1994): Fehlerdiagnose bei Synchronmaschinen. Ph.D. dissertation, Institute for Drive Systems and Power Electronics, Leibniz Universität, Hannover, Germany.
Wu, D., Pekarek, S. D., Fahimi, B. (2009): A field reconstruction technique for efficient modeling of the fields and forces within induction machines. IEEE Trans. Energy Convers., 24(2), 366–374.
Wu, D., Pekarek, S. D., Fahimi, B. (2010): A voltage-input-based field reconstruction technique for efficient modeling of the fields and forces within induction machines. IEEE Trans. Ind. Appl., 57(3), 994–1001.
Khoobroo, A., Fahimi, B. (2011): Magnetic flux estimation in a permanent magnet synchronous machine using field reconstruction method. IEEE Trans. Energy Convers., 26(3), 757–765.
Tessarolo, A. (2012): Accurate computation of multiphase synchronous machine inductances based on winding function theory. IEEE Trans. Energy Convers., 27(4), 895–904.
Dajaku, G., Gerling, D. (2010): Stator slotting effect on the magnetic field distribution of salient pole synchronous permanent-magnet machines. IEEE Trans. Magn., 46(9), 3676–3683.
Dajaku, G., Gerling, D. (2012): Air-gap flux density characteristics of salient pole synchronous permanent-magnet machines. IEEE Trans. Magn., 48(7), 2196–2204.
Neti, P., Nandi, S. (2006): Determination of effective air-gap length of synchronous reluctance motors (SynchRel) from experimental data. IEEE Trans. Ind. Appl., 42(2), 454–464.
Wu, Z. Z., Zhu, Z. Q. (2015): Analysis of air-gap field modulation and magnetic gearing effects in switched flux permanent magnet machines. IEEE Trans. Magn., 51(5).
Jacob, A. (1998): Zum Einfluß von Zahn- und Jochsättigung auf die Harmonischen des Luftspaltfeldes. Electr. Eng., 81(3), 151–161.
Hemmati, S., Kojoori, S. S., Saied, S., Lipo, T. A. (2013): Modelling and experimental validation of internal short-circuit fault in salient-pole synchronous machines using numerical gap function including stator and rotor core saturation. IEE Proc., Electr. Power Appl., 7(5), 391–399.
Steinbrink, J. (2005): Kraftwirkungen in permanentmagneterregten Maschinen. Ph.D. dissertation, Institute for Drive Systems and Power Electronics, Leibniz Universität, Hannover, Germany.
Misir, O., Ponick, B. (2015): Determination of the inductances of a salient-pole synchronous machine without damper winding based on the voltage equation of a single coil in the stator winding. In 10th international symposium on diagnostics for electrical machines, power electronics and drives, SDEMPED, Guarda.
Misir, O., Ponick, B. (2015): Determination of the inductances of a synchronous machine with unsymmetrical winding based on the voltage equation of a single coil in the stator winding. In International conference on electrical drives and power electronics, EDPE, Tatranska Lomnica.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Misir, O., Dobbert, F. & Ponick, B. Analytical method for the air gap permeance calculation of salient pole synchronous machines. Elektrotech. Inftech. 133, 103–111 (2016). https://doi.org/10.1007/s00502-016-0395-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00502-016-0395-9