Zusammenfassung
Die technologischen Fortschritte der letzten Jahre ermöglichten die Entwicklung von kleinen unbemannten Fluggeräten, welche mit Kameras und anderen Sensoren ausgestattet sind. Diese erlauben die einfache Aufnahme von Bildern aus der Vogelperspektive, die vor allem in Katastrophenfällen sehr hilfreich sind. Den Einsatzkräften stehen in solchen Situationen oft nur unvollständige und inkonsistente Informationen zur Verfügung. Luftbilder helfen dabei, einen raschen Überblick über die Situation zu gewinnen und diese zu beurteilen. In diesem Artikel beschreiben die Autoren ein aktuelles Forschungsprojekt, das sich mit dem Einsatz von batteriebetriebenen, drahtlos vernetzten Quadrokoptern im Kontext des Katastrophenmanagements beschäftigt. In diesem "fliegenden Sensornetzwerk" kooperieren mehrere Quadrokopter, um eine vorgegebene Mission zu erfüllen. Das Ziel ist es, ein System zur Analyse von Luftbildern zu entwickeln, in dem mehrere Quadrokopter im Flug eine Formation bilden, das Einsatzgebiet überfliegen und dabei Bilder bzw. Videos aufnehmen. Das Bildmaterial wird im Flug an die Bodenstation übertragen und dort analysiert bzw. für den Benutzer aufbereitet. Die Autoren diskutieren in diesem Beitrag die Herausforderungen für den Einsatz von fliegenden Sensornetzwerken. Hauptaugenmerk dabei ist die starke Ressourcenbeschränkung (z. B. Energie, Rechenleistung und Gewicht) sowie die autonome Koordination der Quadrokopter. Abschließend werden erste Ergebnisse in der Auswertung von Luftbildern eines einzelnen Quadrokopters sowie der Erkennung und Verfolgung von Objekten in Luftbildern präsentiert.
Summary
Advances in control engineering and material science made it possible to develop small-scale unmanned aerial vehicles (UAVs) equipped with cameras and sensors. These UAVs enable us to obtain a bird's eye view of the environment. Having access to an aerial view over large areas is helpful in disaster situations, where often only incomplete and inconsistent information is available to the rescue team. In such situations, airborne cameras and sensors are valuable sources of information helping us to build an "overview" of the environment and to assess the current situation. This paper reports on our ongoing research on deploying small-scale, battery-powered and wirelessly connected UAVs carrying cameras for disaster management applications. In this "aerial sensor network" several UAVs fly in formations and cooperate to achieve a certain mission. The ultimate goal is to have an aerial imaging system in which UAVs build a flight formation, fly over a disaster area such as wood fire or a large traffic accident, and deliver high-quality sensor data such as images or videos. These images and videos are communicated to the ground, fused, analyzed in real-time, and finally delivered to the user. In this paper we introduce our aerial sensor network and its application in disaster situations. We discuss challenges of such aerial sensor networks and focus on the optimal placement of sensors. We formulate the coverage problem as integer linear program (ILP) and present first evaluation results.
References
Akyildiz, I., Kasimoglu, I. (2004): Wireless sensor and actor networks: research challenges. Ad Hoc Networks 2 (4): 351–367
Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., Cayirci, E. (2002): Wireless sensor networks: a survey. Computer Networks 38 (4): 393–422
Akyildiz, I., Melodia, T., Chowdhury, K. (2007): A survey on wireless multimedia sensor networks. Computer Networks 51 (4): 921–960
Ali S., Shah, M. (2006): COCOA: tracking in aerial imagery. In: Henry, D. J. (ed.) Proceedings of Airborne Intelligence, Surveillance, Reconnaissance (ISR) Systems and Applications III, SPIE, 6209 (1)
Bay, H., Tuytelaars, T., Van Gool, L. (2006): Surf: Speeded up robust features. In: Computer Vision ECCV 2006, ser. Lecture Notes in Computer Science. Springer, 3951/2006: 404–417
Bergen, J., Anandan, P., Hanna, K., Hingorani, R. (1992): Hierarchical model-based motion estimation. In: Computer Vision ECCV′92, ser. Lecture Notes in Computer Science. Springer, 588/1992: 237–252
Bredin, J. L., Demaine, E. D., Hajiaghayi, M., Rus, D. (2005): Deploying sensor networks with guaranteed capacity and fault tolerance. In: MobiHoc ′05: Proceedings of the 6th ACM international symposium on Mobile ad hoc networking and computing. New York, USA: ACM, 309–319
CPLEX User Manual. http://www.ilog.com/products/cplex/index.cfm
GNU Linear Programming Kit. http://www.gnu.org/software/glpk/
Ishizuka, M., Aida, M. (2004): Performance study of node placement in sensor networks. In: Proceedings of the 24th International Conference on Distributed Computing Systems Workshops, 598–603
Lowe, D. G. (1999): Object recognition from local scale-invariant features. In: Computer Vision, IEEE Int. Conf. (2): 1150–1157
Murphy, R. R., Pratt, K., Burke, J. (2008): Crew Roles and Operational Protocols for Rotary-Wing Micro-UAVs in Close Urban Environments. In: Proceedings of the 3rd ACM/IEEE international conference on Human robot interaction (HRI '08), 73–80
Murphy, R. R., Steimle, E., Griffin, C., Cullins, C., Hall, M., Pratt, K. (2008): Cooperative use of unmanned sea surface and micro aerial vehicles at Hurricane Wilma. Journal of Field Robotics 25: (3): 164–180
Murphy, R. R., Tadokoro, S., Nardi, D., Jacoff, A., Fiorini, P., Choset, H., Erkmen, A. M. (2008): Search and Rescue Robotics. In: Handbook of Robotics. Springer, 1151–1173
Nardi, D. (2009): Intelligent systems for emergency response (invited talk). In: Fourth International Workshop on Synthetic Simulation and Robotics to Mitigate Earthquake Disaster (SRMED 2009)
Poduri, S., Pattem, S., Krishnamachari, B., Sukhatme, G. S. (2006): Sensor network configuration and the curse of dimensionality. In: Proceedings of the Third IEEE Workshop on Embedded Networked Sensors
Pratt, K. S., Murphy, R., Stover, S., Griffin, C. (2009): CONOPS and autonomy recommendations for VTOL small unmanned aerial system based on Hurricane Katrina operations. Journal of Field Robotics 26 (8): 636–650
Quaritsch, M., Stojanovski, E., Bettstetter, C., Friedrich, G., Hellwagner, H., Hofbaur, M., Shah, M., Rinner, B. (2008): Collaborative Microdrones: Applications and Research Challenges. In: Proceedings of the Second International Conference on Autonomic Computing and Communication Systems (Autonomics 2008), Turin, Italy, 7
Rinner, B., Quaritsch, M., Schriebl, W., Winkler, T., Wolf, W. (2008): The evolution from single to pervasive smart cameras. In: Proceedings of the ACM/IEEE International Conference on Distributed Smart Cameras (ICDSC-08), Stanford, USA, 1–10
Shi, J., Tomasi, C. (1994): Good features to track. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR '94), 593–600
Younis, M., Akkaya, K. (2008): Strategies and techniques for node placement in wireless sensor networks: a survey. Ad Hoc Networks 6 (4): 621–655
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Quaritsch, M., Kruggl, K., Wischounig-Strucl, D. et al. Networked UAVs as aerial sensor network for disaster management applications. Elektrotech. Inftech. 127, 56–63 (2010). https://doi.org/10.1007/s00502-010-0717-2
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1007/s00502-010-0717-2
Schlüsselwörter
- Luftfahrzeuggebundene Sensornetzwerke
- Eingebettete Bildverarbeitung
- Objektverfolgung
- Sensorpositionierung