Uncertain regression model with autoregressive time series errors | Soft Computing Skip to main content
Log in

Uncertain regression model with autoregressive time series errors

  • Mathematical methods in data science
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

Uncertain regression model is a powerful analytical tool for exploring the relationship between explanatory variables and response variables. It is assumed that the errors of regression equations are independent. However, in many cases, the error terms are highly positively autocorrelated. Assuming that the errors have an autoregressive structure, this paper first proposes an uncertain regression model with autoregressive time series errors. Then, the principle of least squares is used to estimate the unknown parameters in the model. Besides, this new methodology is used to analyze and predict the cumulative number of confirmed COVID-19 cases in China. Finally, this paper gives a comparative analysis of uncertain regression model, difference plus uncertain autoregressive model, and uncertain regression model with autoregressive time series errors. From the comparison, it is concluded that the uncertain regression model with autoregressive time series errors can improve the accuracy of predictions compared with the uncertain regression model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Aslam M (2021) A new goodness of fit test in the presence of uncertain parameters. Complex Intell Syst 7(1):359–365

    Article  Google Scholar 

  • Aslam M (2021) A study on skewness and kurtosis estimators of wind speed distribution under indeterminacy. Theo Appl Climatol 143(3–4):1227–1234

    Article  Google Scholar 

  • Aslam M (2021) Analyzing wind power data using analysis of means under neutrosophic statistics. Soft Comput 25(10):7087–7093

    Article  Google Scholar 

  • Aslam M, Albassam M (2019) Application of neutrosophic logic to evaluate correlation between prostate cancer mortality and dietary fat assumption. Symmetry 11(3):330

    Article  Google Scholar 

  • Chen D (2020) Tukeys biweight estimation for uncertain regression model with imprecise observations. Soft Comput 24(22):16803–16809

    Article  Google Scholar 

  • Chen D, Yang X (2021) Maximum likelihood estimation for uncertain autoregressive model with application to carbon dioxide emissions. J Intell Fuzzy Syst 40(1):1391–1399

    Article  Google Scholar 

  • Chen D, Yang X (2021) Ridge estimation for uncertain autoregressive model with imprecise observations. Int J Uncertain Fuzzi Knowl-Based Syst 29(1):37–55

    Article  MathSciNet  Google Scholar 

  • Chen X, Li J, Xiao C, Yang P (2021) Numerical solution and parameter estimation for uncertain SIR model with application to COVID-19. Fuzzy Optim Decis Mak 20(2):189–208

    Article  MathSciNet  Google Scholar 

  • Cochrane D, Orcutt GH (1949) Application of least squares regression to relationships containing autocorrelated error terms. J Am Stat Assoc 44(245):32–61

    MATH  Google Scholar 

  • Durbin J (1960) Estimation of parameters in time-series regression models. J Royal Stat Soc Series B 22(1):139–153

    MathSciNet  MATH  Google Scholar 

  • Jia L, Chen W (2021) Uncertain SEIAR model for COVID-19 cases in China. Fuzzy Optim Decis Mak 20(2):243–259

    Article  MathSciNet  Google Scholar 

  • Lio W, Liu B (2018) Residual and confidence interval for uncertain regression model with imprecise observations. J Intell Fuzzy Syst 35(2):2573–2583

    Article  Google Scholar 

  • Lio W, Liu B (2020) Uncertain maximum likelihood estimation with application to uncertain regression analysis. Soft Comput 24(13):9351–9360

    Article  Google Scholar 

  • Lio W, Liu B (2021) Initial value estimation of uncertain differential equations and zero-day of COVID-19 spread in China. Fuzzy Optim Decis Mak 20(2):177–188

    Article  MathSciNet  Google Scholar 

  • Liu B (2007) Uncertainty theory, 2nd edn. Springer-Verlag, Berlin

    MATH  Google Scholar 

  • Liu S (2019) Leave-p-out cross-validation test for uncertain Verhulst-Pearl model with imprecise observations. IEEE Access 7:131705–131709

    Article  Google Scholar 

  • Liu Z (2021) Uncertain growth model for the cumulative number of COVID-19 infections in China. Fuzzy Optim Decis Mak 20(2):229–242

    Article  MathSciNet  Google Scholar 

  • Liu Z (2021) Generalized moment estimation for uncertain differential equations. Appl Math Comput 392:125724

    MathSciNet  MATH  Google Scholar 

  • Liu Z, Jia L (2020) Cross-validation for the uncertain Chapman-Richards growth model with imprecise observations. Int J Uncertain Fuzzi Knowl-Based Syst 28(5):769–783

    Article  MathSciNet  Google Scholar 

  • Liu Z, Yang X (2020) Cross validation for uncertain autoregressive model. Commun Stat Simul Comput. https://doi.org/10.1080/03610918.2020.1747077

    Article  Google Scholar 

  • Liu Z, Yang Y (2020) Least absolute deviations estimation for uncertain regression with imprecise observations. Fuzzy Optim Decis Mak 19(1):33–52

    Article  MathSciNet  Google Scholar 

  • Liu Y, Liu B (2020) Estimating unknown parameters in uncertain differential equation by maximum likelihood estimation, Technical Report

  • Sheng Y, Yao K, Chen X (2020) Least squares estimation in uncertain differential equations. IEEE Trans Fuzzy Syst 28(10):2651–2655

    Article  Google Scholar 

  • Song Y, Fu Z (2018) Uncertain multivariable regression model. Soft Comput 22(17):5861–5866

    Article  Google Scholar 

  • Tang H (2020) Uncertain vector autoregressive model with imprecise observations. Soft Comput 24(22):17001–17007

    Article  Google Scholar 

  • Yang X, Liu B (2019) Uncertain time series analysis with imprecise observations. Fuzzy Optim Decis Mak 18(3):263–278

    Article  MathSciNet  Google Scholar 

  • Yang X, Ni Y (2021) Least-squares estimation for uncertain moving average model. Commun Stat Theory Methods 50(17):4134–4143

    Article  MathSciNet  Google Scholar 

  • Yang X, Liu Y, Park G (2020) Parameter estimation of uncertain differential equation with application to financial market. Chaos Solitons Fract 139:110026

    Article  MathSciNet  Google Scholar 

  • Yang X, Park G, Hu Y (2020) Least absolute deviations estimation for uncertain autoregressive model. Soft Comput 24(23):18211–18217

    Article  Google Scholar 

  • Yao K, Liu B (2018) Uncertain regression analysis: an approach for imprecise observations. Soft Comput 22(17):5579–5582

    Article  Google Scholar 

  • Yao K, Liu B (2020) Parameter estimation in uncertain differential equations. Fuzzy Optim Decis Mak 19(1):1–12

    Article  MathSciNet  Google Scholar 

  • Ye T, Liu Y (2020) Multivariate uncertain regression model with imprecise observations. J Ambient Intell Human Comput 11(11):4941–4950

    Article  Google Scholar 

  • Ye T, Liu B (2021) Uncertain hypothesis test with application to uncertain regression analysis. Fuzzy Optim Decis Mak. https://doi.org/10.1007/s10700-021-09365-w

    Article  Google Scholar 

  • Ye T, Yang X (2021) Analysis and prediction of confirmed COVID-19 cases in China with uncertain time series. Fuzzy Optim Decis Mak 20(2):209–228

    Article  MathSciNet  Google Scholar 

  • Zhang C, Liu Z, Liu J (2020) Least absolute deviations for uncertain multivariate regression model. Int J General Syst 49(4):449–465

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grants No.61873329 and 61873084).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Data availability

All data generated or analyzed during this study are included in Tables 1 and 2.

Code availability

All the codes implemented during this study are available from the corresponding author on reasonable request.

Ethical approval

This paper does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, D. Uncertain regression model with autoregressive time series errors. Soft Comput 25, 14549–14559 (2021). https://doi.org/10.1007/s00500-021-06362-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-021-06362-4

Keywords