Optimization of different non-traditional turning processes using soft computing methods | Soft Computing
Skip to main content

Optimization of different non-traditional turning processes using soft computing methods

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

In this study, different non-traditional turning operations were investigated using various soft computing methods. In these operations, cutting speed, machining method, material type and tool overhang lengths were used as machining inputs. Surface roughness, stable cutting depths and maximum cutting tool temperatures were considered as machining outputs. In the first stage, artificial neural network, classification and regression tree (CART) and support vector machine models were developed to predict these outputs. In the second stage, an optimization study (regression analysis) was conducted. CART model produced better prediction results compared to the other methods. In CART models; 0.991, 0.998 and 0.959 values of correlation coefficients were calculated for the prediction of surface roughness, stable cutting depth and maximum cutting tool temperatures, respectively. In the optimization study, ultrasonic assisted/hot ultrasonic assisted turning methods, a tool overhang length of 60 mm and a cutting speed of 10 m/min provide optimum conditions. The proposed soft computing models will help to understand the effect of various parameters in non-traditional machining methods. These models will give a preliminary idea before the experiments. These models can be used as an alternative instead of 2D finite element machining simulations. Less analysis time is required compared to the finite element simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Acayaba GMA, Escalona PM (2015) Prediction of surface roughness in low speed turning of AISI316 austenitic stainless steel. CIRP J Manuf Sci Technol 11:62–67

    Article  Google Scholar 

  • Al Hazza MHF, Adesta EYT, Hasan MH, Shaffiar N (2014) Surface roughness modeling in high speed hard turning using regression analysis. Int Rev Mech Eng 8(2):431–436

    Google Scholar 

  • Amini S, Teimouri R (2017) Parametric study and multicharacteristic optimization of rotary turning process assisted by longitudinal ultrasonic vibration. Proc Inst Mech Eng Part E J Process Mech Eng 231(5):1–14

    Article  Google Scholar 

  • Amini S, Hosseinabadi HN, Sajjady SA (2016) Experimental study on effect of micro textured surfaces generated by ultrasonic vibration assisted face turning on friction and wear performance. Appl Surf Sci 390:633–648

    Article  Google Scholar 

  • Arsecularatne JA, Zhang LC, Montross C, Mathew P (2006) On machining of hardened AISI D2 steel with PCBN tools. J Mater Process Technol 171(2):244–252

    Article  Google Scholar 

  • Babitsky V, Kalashnikov A, Meadows A, Wijesundara AAH (2003) Ultrasonically assisted turning of aviation materials. J Mater Process Technol 132(1–3):157–167

    Article  Google Scholar 

  • Babitsky V, Mitrofanov A, Silberschmidt V (2004) Ultrasonically assisted turning of aviation materials: simulations and experimental study. Ultrasonics 42(1–9):81–86

    Article  Google Scholar 

  • Bai W, Sun R, Leopold J (2016) Numerical modelling of microstructure evolution in Ti6Al4V alloy by ultrasonic assisted cutting. Procedia CIRP 46:428–431

    Article  Google Scholar 

  • Bartarya G, Choudhur SK (2012) Effect of cutting parameters on cutting force and surface roughness during finish hard turning AISI52100 grade steel. Procedia CIRP 1:651–656

    Article  Google Scholar 

  • Benga GC, Abrao AM (2003) Turning of hardened 100Cr6 bearing steel with ceramic and PCBN cutting tools. J Mater Process Technol 143:237–241

    Article  Google Scholar 

  • Brehl DE, Dow TA (2008) Review of vibration-assisted machining. Precis Eng 32(3):153–172

    Article  Google Scholar 

  • Breiman L, Friedman JH, Olshen RA, Stone CJ (1984) Classification and Regression Trees. Wadsworth Inc, Wadsworth

    MATH  Google Scholar 

  • Çelik YH, Kılıçkap E, Güney M (2016) Investigation of cutting parameters affecting on tool wear and surface roughness in dry turning of Ti–6Al–4V using CVD and PVD coated tools. J Braz Soc Mech Sci Eng 39(6):2085–2093

    Article  Google Scholar 

  • Chen W (2000) Cutting forces and surface finish when machining medium hardness steel using CBN tools. Int J Mach Tools Manuf 40(3):455–466

    Article  Google Scholar 

  • Cheung CF, Lee WB (2000) Modelling and simulation of surface topography in ultra-precision diamond turning. Proc Inst Mech Eng Part B J Eng Manuf 214(6):463–480

    Article  Google Scholar 

  • Davim JP (2003) Design of optimisation of cutting parameters for turning metal matrix composites based on the orthogonal arrays. J Mater Process Technol 132(1–3):340–344

    Article  Google Scholar 

  • Davim JP (ed) (2010) Surface integrity in machining. Springer, London

    Google Scholar 

  • Deng W, Chen R, He B, Liu Y (2012a) A novel two-stage hybrid swarm intelligence optimization algorithm and application. Soft Comput 16:1707–1722

    Article  Google Scholar 

  • Deng W, Chen R, Gao J, Song Y, Xu J (2012b) A novel parallel hybrid intelligence optimization algorithm for a function approximation problem. Comput Math with Appl 63(1):325–336

    Article  MathSciNet  MATH  Google Scholar 

  • Deng W, Yang X, Zou L, Wang M, Liu Y, Li Y (2013) Chemometrics and intelligent laboratory systems an improved self-adaptive differential evolution algorithm and its application. Chemom Intell Lab Syst 128:66–76

    Article  Google Scholar 

  • Deng W, Zhao H, Liu J, Yan X, Li Y, Yin L, Ding C (2015) An improved CACO algorithm based on adaptive method and multi-variant strategies. Soft Comput 19:701–713

    Article  Google Scholar 

  • Deng W, Zhao H, Zou L (2017a) A novel collaborative optimization algorithm in solving complex optimization problems. Soft Comput 21(15):4387–4398

    Article  Google Scholar 

  • Deng W, Zhao H, Yang X, Xiong J, Sun M, Li B (2017b) Study on an improved adaptive PSO algorithm for solving multi-objective gate assignment. Appl Soft Comput 59:288–302

    Article  Google Scholar 

  • Deng W, Yao R, Zhao H, Yang X, Li G (2017c) A novel intelligent diagnosis method using optimal LS-SVM with improved PSO algorithm. Soft Comput. https://doi.org/10.1007/s00500-017-2940-9

    Google Scholar 

  • Deng W, Li B, Zhao H (2017d) Study on an airport gate reassignment method. Symmetry 9(258):1–18

    Google Scholar 

  • Es HA, Kalender FY, Harzemcebi C (2014) Forecasting the net energy demand of turkey by artificial neural networks. J Fac Eng Arch Gazi Univ 29(3):495–504

    Google Scholar 

  • Farahnakian M, Razfar MR (2014) Experimental study on hybrid ultrasonic and plasma aided turning of hardened steel AISI 4140. Mater Manuf Process 29(5):550–556

    Article  Google Scholar 

  • Ferreira R, Řehoř J, Lauro CH, Carou D, Davim JP (2016) Analysis of the hard turning of AISI H13 steel with ceramic tools based on tool geometry: surface roughness, tool wear and their relation. J Braz Soc Mech Sci Eng 38(8):2413–2420

    Article  Google Scholar 

  • Gaitonde VN, Karnik S, Figueira L, Davim JP (2011) Performance comparison of conventional and wiper ceramic inserts in hard turning through artificial neural network modeling. Int J Adv Manuf Technol 52(1–4):101–114

    Article  Google Scholar 

  • Guo P, Ehmann KF (2013) Development of a tertiary motion generator for elliptical vibration texturing. Precis Eng 37(2):364–371

    Article  Google Scholar 

  • Gürgen S, Çakır, FH, Sofuoğlu, MA, Orak, S, Kuşhan, MC (2019) An experimental study of hot ultrasonic assisted machining for Ti6Al4V alloy. Measurement (Unpublished)

  • Hamzaçebi C (2011) Yapay Sinir Ağları: Tahmin Amaçlı Kullanımı Matlab ve Neurosolution Uygulamalı. Ekin Publishing, Bursa

    Google Scholar 

  • Jiao F, Niu Y, Liu X (2015) Effect of ultrasonic vibration on surface white layer in ultrasonic aided turning of hardened GCr15 bearing steel. Mater Res Innov 19(8):S8-938-S8-942

    Google Scholar 

  • Karabulut S (2015) Optimization of surface roughness and cutting force during AA7039/Al2O3 metal matrix composites milling using neural networks and Taguchi method. Measurement 66:139–149

    Article  Google Scholar 

  • Kim D-S, Chang I-C, Kim S-W (2002) Microscopic topographical analysis of tool vibration effects on diamond turned optical surfaces. Precis Eng 26(2):168–174

    Article  Google Scholar 

  • Kumar R, Chauhan S (2015) Study on surface roughness measurement for turning of Al 7075/10/SiCp and Al 7075 hybrid composites by using response surface methodology (RSM) and artificial neural networking (ANN). Measurement 65:166–180

    Article  Google Scholar 

  • Madić M, Radovanović M (2013) Modeling and analysis of correlations between cutting parameters and cutting force components in turning AISI 1043 steel using ANN. J Braz Soc Mech Sci Eng 35(2):111–121

    Article  Google Scholar 

  • Mahdavinejad RA, Khani N, Fakhrabadi MMS (2012) Optimization of milling parameters using artificial neural network and artificial immune system. J Mech Sci Technol 26(12):4097–4104

    Article  Google Scholar 

  • Mitrofanov AV, Babitsky VI, Silberschmidt VV (2003) Finite element simulations of ultrasonically assisted turning. Comput Mater Sci 28(3–4):645–653

    Article  Google Scholar 

  • Morgan ve JN, Sonquist JA (1963) Problems in the analysis of survey data, and a proposal. J Am Stat Assoc 58:415–435

    Article  MATH  Google Scholar 

  • Muhammad R, Maurotto A, Roy A, Silberschmidt VV (2011) Analysis of forces in vibro-impact and hot vibro-impact turning of advanced alloys. Appl Mech Mater 70:315–320

    Article  Google Scholar 

  • Muhammad R, Maurotto A, Roy A, Silberschmidt VV (2012) Hot ultrasonically assisted turning of β-ti alloy. Procedia CIRP 1:336–341

    Article  Google Scholar 

  • Muhammad R, Roy A, Silberschmidt VV (2013) Finite element modelling of conventional and hybrid oblique turning processes of titanium alloy. Procedia CIRP 8:510–515

    Article  Google Scholar 

  • Muhammad R, Hussain MS, Maurotto A, Siemers C, Roy A, Silberschmidt VV (2014) Analysis of a free machining α+β titanium alloy using conventional and ultrasonically assisted turning. J Mater Process Technol 214(4):906–915

    Article  Google Scholar 

  • Muller KR, Smola A, Ratch G, Scholkopf B, Kohlmorgen J, Vapnik V (2000) Using support vector support machines for time series prediction. Image Processing Services Research Lab, AT&T Labs, Florham Park

    Google Scholar 

  • Nath C, Rahman M (2008) Effect of machining parameters in ultrasonic vibration cutting. Int J Mach Tools Manuf 48(9):965–974

    Article  Google Scholar 

  • Nath C, Rahman M, Andrew SSK (2007) A study on ultrasonic vibration cutting of low alloy steel. J Mater Process Technol 192–193(1):159–165

    Article  Google Scholar 

  • Niknam SA, Khettabi R, Songmene V (2014) Machinability and machining of titanium alloys: a review. In: Davim JP (ed) machining of titanium alloys. Springer, Berlin, pp 1–30

    Google Scholar 

  • Özel T, Hsu TK, Zeren E (2005) Effects of cutting edge geometry, workpiece hardness, feed rate and cutting speed on surface roughness and forces in finish turning of hardened AISI H13 steel. Int J Adv Manuf Technol 25(3-4):262–269

    Article  Google Scholar 

  • Patil S, Joshi S, Tewari A, Joshi SS (2014) Modelling and simulation of effect of ultrasonic vibrations on machining of Ti6Al4V. Ultrasonics 54(2):694–705

    Article  Google Scholar 

  • Razavi H, Mirbagheri M (2016) Design and fabrication of a novel vibrational system for ultrasonic assisted oblique turning process. J Mech Sci Technol 30(2):827–835

    Article  Google Scholar 

  • Saglam H, Unsacar F, Yaldiz S (2006) Investigation of the effect of rake angle and approaching angle on main cutting force and tool tip temperature. Int J Mach Tool Manuf 46(2):132–141

    Article  Google Scholar 

  • Sahoo A, Rout A, Das D (2015) Response surface and artificial neural network prediction model and optimization for surface roughness in machining. Int J Ind Eng Comput 6(2):229–240

    Google Scholar 

  • Sajjady SA, Nouri Hossein Abadi H, Amini S, Nosouhi R (2016) Analytical and experimental study of topography of surface texture in ultrasonic vibration assisted turning. Mater Des 93(5):311–323

    Article  Google Scholar 

  • Shamoto E, Moriwaki T (1994) Study on elliptical vibration cutting. CIRP Ann Manuf Technol 43(1):35–38

    Article  Google Scholar 

  • Shamoto E, Suzuki N, Hino R (2008) Analysis of 3D elliptical vibration cutting with thin shear plane model. CIRP Ann Manuf Technol 57(1):57–60

    Article  Google Scholar 

  • Sharma VS, Dogra M, Suri NM (2008) Advances in the turning process for productivity improvement: a review. Proc Inst Mech Eng Part B J Eng Manuf 222(11):1417–1442

    Article  Google Scholar 

  • Silberschmidt VV, Mahdy SMA, Gouda MA, Naseer A, Maurotto A, Roy A (2014) Surface-roughness improvement in ultrasonically assisted turning. Procedia CIRP 13:49–54

    Article  Google Scholar 

  • Singh P, Pungotra H, Kalsi NS (2016) On the complexities in machining titanium alloys. In: Mandal DK, Syan CS (eds) CAD/CAM, robotics and factories of the future. Springer India, New Delhi, pp 499–507

    Chapter  Google Scholar 

  • Sofuoğlu MA, Çakır FH, Gürgen S, Orak S, Kuşhan MC (2018a) Experimental investigation of machining characteristics and chatter stability for Hastelloy-X with ultrasonic and hot turning. Int J Adv Manuf Technol 95(1-4):83–97

    Article  Google Scholar 

  • Sofuoğlu MA, Çakır FH, Gürgen S, Orak S, Kuşhan MC (2018b) Numerical investigation of hot ultrasonic assisted turning of aviation alloys. J Braz Soc Mech Sci Eng 40(122):1–12

    Google Scholar 

  • Vapnik VN (1995) The Nature of Statistical Learning Theory. Springer, New York

    Book  MATH  Google Scholar 

  • Wang X, Feng CX (2002) Development of empirical models for surface roughness prediction in finish turning. Int J Adv Manuf Technol 20(5):348–356

    Article  Google Scholar 

  • Wu X, Kumar V (2009) CART: classification and regression trees, top ten algorithms in data mining. Chapman and Hall, London

    Book  Google Scholar 

  • Yen YC, Jain A, Altan T (2004) A finite element analysis of orthogonal machining using different tool edge geometries. J Mater Process Technol 146(1):72–81

    Article  Google Scholar 

  • Zhang X, Senthil Kumar A, Rahman M, Nath C, Liu K (2012) An analytical force model for orthogonal elliptical vibration cutting technique. J Manuf Process 14(3):378–387

    Article  Google Scholar 

  • Zhang X, Kumar AS, Rahman M, Liu K (2013) Modeling of the effect of tool edge radius on surface generation in elliptical vibration cutting. Int J Adv Manuf Technol 65(1–4):35–42

    Article  Google Scholar 

  • Zhang C, Ehmann K, Li Y (2015) Analysis of cutting forces in the ultrasonic elliptical vibration-assisted micro-groove turning process. Int J Adv Manuf Technol 78(1–4):139–152

    Article  Google Scholar 

  • Zhang C, Guo P, Ehmann KF, Li Y (2016) Effects of ultrasonic vibrations in micro-groove turning. Ultrasonics 67:30–40

    Article  Google Scholar 

  • Zou P, Xu Y, He Y, Chen M, Wu H (2015) Experimental investigation of ultrasonic vibration assisted turning of 304 austenitic stainless steel. Shock Vib 2015:1–19

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Alper Sofuoğlu.

Ethics declarations

Conflict of interest

All the authors declare that they have no conflict of interest.

Human and animal rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by V. Loia.

Appendix

Appendix

See Tables 45 and 46.

Table 45 Levels of experiments (Sofuoğlu et al. 2018a, b; Gürgen et al. 2019)
Table 46 Experimental and CART model results (Sofuoğlu et al. 2018a, b; Gürgen et al. 2019)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sofuoğlu, M.A., Çakır, F.H., Kuşhan, M.C. et al. Optimization of different non-traditional turning processes using soft computing methods. Soft Comput 23, 5213–5231 (2019). https://doi.org/10.1007/s00500-018-3471-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-018-3471-8

Keywords