Modeling and analysis of the simplest fuzzy PID controller of Takagi–Sugeno type with modified rule base | Soft Computing Skip to main content
Log in

Modeling and analysis of the simplest fuzzy PID controller of Takagi–Sugeno type with modified rule base

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

This paper deals with the simplest fuzzy PID controllers of the Takagi–Sugeno (TS) type. The term simplest is coined since minimal (two) number of fuzzy sets is used for fuzzification in these controllers. The mathematical models of these controllers are found using a modified rule base. The rule base consists of two rules which reduce the number of tuning parameters. Two classes of the simplest fuzzy PID controller are defined using algebraic product triangular norm and bounded sum/maximum triangular co-norm. It is shown that the fuzzy PID controller with modified TS rule base is equivalent to a nonlinear variable gain/ structure controller. The BIBO stability of the closed-loop control system is studied using the small gain theorem. The computational aspects of the controllers are investigated. The applicability of the simplest fuzzy PID controllers is demonstrated with the help of examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Ban X, Gao XZ, Huang X, Yin H (2007) Stability analysis of the simplest Takagi–Sugeno fuzzy control system using Popov criterion. Int J Innov Comput Inf Control 3(5):1087–1096

    MATH  Google Scholar 

  • Cao K, Gao XZ, Huang X, Ban X (2011) Stability analysis of a type of Takagi–Sugeno PI fuzzy control systems using circle criterion. Int J Comput Intell Syst 4(2):196–207

    Article  Google Scholar 

  • Cao YY, Frank PM (2000) Analysis and synthesis of nonlinear time-delay systems via fuzzy control approach. IEEE Trans Fuzzy Syst 8(2):200–211

    Article  Google Scholar 

  • Chen CL, Chen PC, Chen CK (1993) Analysis and design of fuzzy control system. Fuzzy Sets Syst 57(2):125–140

    Article  MathSciNet  MATH  Google Scholar 

  • Chou OK, Kim J, Kim J, Lee JS (2015) BIBO stability analysis of TSK fuzzy PI/PD control systems. Intell Autom Soft Comput 21(4):645–658

    Article  Google Scholar 

  • Dong J, Yang GH, Zhang H (2015) Stability analysis of T–S fuzzy control systems by using set theory. IEEE Trans Fuzzy Syst 23(4):827–841

    Article  Google Scholar 

  • Duan XG (2013) A saturation-based tuning method for fuzzy PID controller. IEEE Trans Ind Electron 60(11):5177–5185

    Article  Google Scholar 

  • Foulloy L, Galichet S (2003) Fuzzy control with fuzzy inputs. IEEE Trans Fuzzy Syst 11(4):437–449

    Article  MATH  Google Scholar 

  • Gil P, Lucena C, Cardoso A, Palma LB (2015) Gain tuning of fuzzy PID controllers for MIMO systems: a performance-driven approach. IEEE Trans Fuzzy Syst 23(4):757–768

    Article  Google Scholar 

  • Hu B, Mann GKI, Gosine RG (2001) A systematic study of fuzzy PID controllers-function based evaluation approach. IEEE Trans Fuzzy Syst 9(5):699–712

    Article  Google Scholar 

  • Khalil HK (2002) Nonlinear Systems, 3rd edn. Prentice Hall, Upper Saddle River

    MATH  Google Scholar 

  • Kim JH, Oh SJ (2000) A fuzzy PID controller for nonlinear and uncertain systems. Soft Comput 4(2):123–129

    Article  MathSciNet  Google Scholar 

  • Kumar V, Nakra BC, Mittal AP (2011) A review on classical and fuzzy PID controllers. Int J Intell Control Syst 16(3):170–181

    Google Scholar 

  • Lam HK, Leung FHF (2005) Stability analysis of fuzzy control systems subject to uncertain grades of membership. IEEE Trans Syst Man Cybern B Cybern 35(6):1322–1325

    Article  Google Scholar 

  • Lepetic M, Skrjanc I, Chiacchiarini HG, Matko D (2003) Predictive functional control based on fuzzy model: comparison with linear predictive functional control and PID control. J Intell Robot Syst 36(4):467–480

    Article  MATH  Google Scholar 

  • Mamdani EH (1974) Application of fuzzy algorithms for control of simple dynamic plant. Proc IEE 122(12):1585–1588

    Google Scholar 

  • Misir D, Malki HA, Chen G (1996) Design and analysis of a fuzzy proportional-integral-derivative controller. Fuzzy Sets Syst 79(3):297–314

    Article  MathSciNet  MATH  Google Scholar 

  • Mizumoto M (1995) Realization of PID controls by fuzzy control methods. Fuzzy Sets Syst 70(2 & 3):171–182

    Article  MathSciNet  MATH  Google Scholar 

  • Mohan BM (2011) Fuzzy PID control via modified Takagi–Sugeno rules. Intell Autom Soft Comput 17(2):165–174

    Article  MathSciNet  Google Scholar 

  • Mohan BM, Sinha A (2006) The simplest fuzzy PID controllers: mathematical models and stability analysis. Soft Comput 10(10):961–975

    Article  MATH  Google Scholar 

  • Mohan BM, Sinha A (2008) Analytical structure and stability analysis of a fuzzy PID controller. Appl Soft Comput 8:749–758

    Article  Google Scholar 

  • Nguang SK, Shi P (2006) Robust \(H_{\infty }\) output feedback control design for fuzzy dynamic systems with quadratic D stability constraints: an LMI approach. Inf Sci 176:2161–2191

    Article  MathSciNet  MATH  Google Scholar 

  • Nowakova J, Pokorny M, Pies M (2015) Conventional controller design based on Takagi–Sugeno fuzzy models. J Appl Log 13(2):148–155

    Article  MATH  Google Scholar 

  • Palm R, Rehfuess U (1997) Fuzzy controllers as gain scheduling approximators. Fuzzy Sets Syst 85:233–246

    Article  MathSciNet  Google Scholar 

  • Savran A, Kahraman G (2014) A fuzzy model based adaptive PID controller design for nonlinear and uncertain processes. ISA Trans 53(2):280–288

    Article  Google Scholar 

  • Sio KC, Lee CK (1998) Stability of fuzzy PID controllers. IEEE Trans Syst Man Cybern A Syst Hum 28(4):490–495

    Article  Google Scholar 

  • Takagi T, Sugeno M (1985) Fuzzy identification of systems and its applications to modeling and control. IEEE Trans Syst Man Cybern SMC–15(1):116–132

    Article  MATH  Google Scholar 

  • Tanaka K, Ikeda T, Wang HO (1996) Robust stabilization of a class of uncertain nonlinear systems via fuzzy model: quadratic stabilizability, \( H^{\infty } \) control theory, and linear matrix inequalities. IEEE Trans Fuzzy Syst 4(1):1–13

    Article  Google Scholar 

  • Tanaka K, Sugeno M (1992) Stability analysis and design of fuzzy control systems. Fuzzy Sets Syst 45(2):135–156

    Article  MathSciNet  MATH  Google Scholar 

  • Tanaka K, Wang HO (2001) Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach. Wiley, Hoboken

    Book  Google Scholar 

  • Teixeira MCM, Zak SH (1999) Stabilizing controller design for uncertain nonlinear systems using fuzzy models. IEEE Trans Fuzzy Syst 7(2):133–142

    Article  Google Scholar 

  • Wang HO, Tanaka K, Griffin MF (1996) An approach to fuzzy control of nonlinear systems: stability and design issues. IEEE Trans Fuzzy Syst 4(1):14–23

    Article  Google Scholar 

  • Ying H (2000) Theory and application of a novel fuzzy PID controller using a simplified Takagi–Sugeno rule scheme. Inf Sci 123(3 & 4):281–293

    Article  Google Scholar 

  • Zadeh LA (1965) Fuzzy Sets. Inf Control 8:338–353

    Article  MATH  Google Scholar 

  • Zadeh LA (1973) Outline of a new approach to the analysis of complex systems and decision processes. IEEE Trans Syst Man Cybern SMC–3(1):28–44

    Article  MathSciNet  MATH  Google Scholar 

  • Zadeh LA (1994) The role of fuzzy logic in modeling, identification and control. Model Identif Control 15(3):191–203

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ritu Raj.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by V. Loia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raj, R., Mohan, B.M. Modeling and analysis of the simplest fuzzy PID controller of Takagi–Sugeno type with modified rule base. Soft Comput 22, 5147–5161 (2018). https://doi.org/10.1007/s00500-017-2674-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-017-2674-8

Keywords