Kursawe and ZDT functions optimization using hybrid micro genetic algorithm (HMGA) | Soft Computing Skip to main content

Advertisement

Log in

Kursawe and ZDT functions optimization using hybrid micro genetic algorithm (HMGA)

  • Focus
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

A hybrid micro genetic algorithm (HMGA) is proposed for Pareto optimum search focusing on the Kursawe and ZDT test functions. HMGA is a fusion of the micro genetic algorithm (MGA) and the elitism concept of fast Pareto genetic algorithm. The effectiveness of HMGA in Pareto optimal convergence was investigated with two performance indicators (i.e. generational distance and spacing). To measure HMGA’s performance, a comparison study was conducted between HMGA and MGA. In this work, HMGA is outperformed MGA in the search for Pareto optimal front and capable of solving different difficulty of MOPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Baesler F, Palma C (2014) Multiobjective parallel machine scheduling in the sawmill industry using memetic algorithms. Int J Adv Manuf Technol 74(5–8):757–768

    Article  Google Scholar 

  • Banzhaf W et al (1998) Genetic programming: an introduction, vol 1. Morgan Kaufmann, San Francisco

    Book  MATH  Google Scholar 

  • Bartz-Beielstein T, Limbourg P, Mehnen J, Schmitt K, Parsopoulos, KE, Vrahatis MN (2003) Particle swarm optimizers for Pareto optimization with enhanced archiving techniques. In: Evolutionary computation, 2003. CEC’03. The 2003 Congress on, IEEE

  • Bastos-Filho CJA, Chaves DAR, e Silva FSF, Pereira HA, Martins-Filho JF (2011) Wavelength assignment for physical-layer-impaired optical networks using evolutionary computation. Opt Commun Netw IEEE/OSA J 3(3):178–188

    Article  Google Scholar 

  • Beyer H-G (2001) The theory of evolution strategies. Springer, Heidelberg

    Book  Google Scholar 

  • Carcangiu S, Fanni A, Montisci A (2008) Multiobjective tabu search algorithms for optimal design of electromagnetic devices. Magn IEEE Trans 44(6):970–973

    Article  Google Scholar 

  • Coello CC, Lamont GB (2005) An introduction to multi-objective evolutionary algorithms and their applications. Appl Multi-Object Evol Algorithms 1:1–28

    Article  Google Scholar 

  • Coello CAC, Pulido G (2005) Multiobjective structural optimization using a microgenetic algorithm. Struct Multidiscip Optim 30:388–403

    Article  Google Scholar 

  • Dasheng L, Tan KC, Goh CK, Ho WK (2007) A multiobjective memetic algorithm based on particle swarm optimization. Syst Man Cybern Part B: Cybern IEEE Trans 37(1):42–50

    Article  Google Scholar 

  • Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. Evol Comput IEEE Trans 6(2):182–197

    Article  Google Scholar 

  • Deb K (2008) Introduction to evolutionary multiobjective optimization. In: Branke J (ed) Multiobjective optimization. Springer, Berlin, Heidelberg, pp 59–96

    Chapter  Google Scholar 

  • Deb K (2010) Recent developments in evolutionary multi-objective optimization. In: Ehrgott M, Figueira JR, Greco S (eds) Trends in multiple criteria decision analysis. Springer, US, pp 339–368

    Chapter  Google Scholar 

  • Durillo JJ, Nebro AJ (2011) jMetal: a Java framework for multi-objective optimization. Adv Eng Softw 42(10):760–771

    Article  Google Scholar 

  • Eiben AE, Bäck T (1997) Empirical investigation of multiparent recombination operators in evolution strategies. Evol Comput 5(3):347–365

    Article  Google Scholar 

  • Emmerich Michael, Deutz André (2006) Multicriteria optimization and decision making. LIACS, Leiden university, NL

    Google Scholar 

  • Eskandari H, Geiger C (2008) A fast Pareto genetic algorithm approach for solving expensive multiobjective optimization problems. J Heuristics 14(3):203–241

    Article  MATH  Google Scholar 

  • Fogel DB (1992) Using evolutionary programming for modeling: an ocean acoustic example. Ocean Eng IEEE J 17(4):333–340

    Article  Google Scholar 

  • Fonseca CM, Fleming PJ (1993) Genetic algorithms for multiobjective optimization: formulationDiscussion and generalization. In: ICGA

  • Ho SL, Yang S, Ni G, Wong HC (2002) A tabu method to find the Pareto solutions of multiobjective optimal design problems in electromagnetics. Magn IEEE Trans 38(2):1013–1016

    Article  Google Scholar 

  • Holland JH (1975) Adaptation in natural and artificial systems. The University of Michigan Press, Ann Arbor

    Google Scholar 

  • Horn J, Nafpliotis N, Goldberg DE (1994) A niched Pareto genetic algorithm for multiobjective optimization. In: IEEE World Congress on Computational Intelligence. Proceedings of the 1st IEEE Conference on Evolutionary Computation, 1994

  • Hwang C-L, Masud ASM (1979) Multiple objective decision making—methods and applications: a state-of-the-art survey. In: Albach H, Balakrishnan AV, Beckmann M, Dhrymes P, Green J, Hildenbrand W, Krelle W, Kunzi HP, Ritter K, Sato R, Schelbert H, Schonfeld P (eds) Lecture notes in economics and mathematical systems. Springer, Berlin, Heidelberg

  • Iba H, Aranha C (2012) Introduction to genetic algorithms. In: Lim M-H, Ong Y-S (eds) Practical applications of evolutionary computation to financial engineering. Springer, Berlin, Heidelberg, pp 1–17

  • Knowles J (2006) ParEGO: a hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems. Evol Comput IEEE Trans 10(1):50–66

    Article  Google Scholar 

  • Knowles JD, Corne DW (2000) Approximating the nondominated front using the Pareto archived evolution strategy. Evol Comput 8(2):149–172

    Article  Google Scholar 

  • Kursawe F (1991) A variant of evolution strategies for vector optimization. In: Schwefel H-P, Männer R (eds) Parallel problem solving from nature. Springer, Berlin, Heidelberg, pp 193–197

    Chapter  Google Scholar 

  • Leung M-F, Ng S-C, Cheung C-C, Lui AK (2014) A new strategy for finding good local guides in MOPSO. In: Evolutionary computation (CEC), 2014 IEEE Congress on, IEEE

  • Lipinski P (2012) Practical applications of evolutionary computation to financial engineering: robust techniques for forecasting, trading, and hedging (Iba, H. and Aranha, C.C.; 2012)[book review]. Comput Intell Mag IEEE 7(2):75–76

    Article  Google Scholar 

  • Lughofer E (2012) A dynamic split-and-merge approach for evolving cluster models. Evol Syst 3(3):135–151

    Article  Google Scholar 

  • Maheta HH, Dabhi VK (2014) An improved SPEA2 multi objective algorithm with non dominated elitism and generational crossover. In: 2014 International Conference on Issues and Challenges in Intelligent Computing Techniques (ICICT)

  • Nebro AJ, Luna F, Alba E, Dorronsoro B, Durillo JJ, Beham A (2008) AbYSS: adapting scatter search to multiobjective optimization. Evol Comput IEEE Trans 12(4):439–457

    Article  Google Scholar 

  • O’Mahony C, Wilson N (2011) Sorted-pareto dominance: an extension to the Pareto Dominance relation and its application in Soft Constraints. 11th Workshop on Preferences and Soft Constraints

  • Precup R-E, David R-C, Petriu EM, Preitl S, Paul AS (2011) Gravitational search algorithm-based tuning of fuzzy control systems with a reduced parametric sensitivity. In: Gaspar-Cunha A (ed) Soft computing in industrial applications. Springer, Berlin, Heidelberg, pp 141–150

  • Pulido GT, Coello CAC (2004) Using clustering techniques to improve the performance of a multi-objective particle swarm optimizer. In: Deb K (ed) Genetic and evolutionary computation-GECCO 2004. Springer

  • Raquel CR, Naval PC Jr (2005) An effective use of crowding distance in multiobjective particle swarm optimization. In: Proceedings of the 2005 conference on Genetic and evolutionary computation, ACM

  • Schott JR (1995) Fault tolerant design using single and multicriteria genetic algorithm optimization. DTIC Document

  • Smith KI, Everson RM, Fieldsend JE, Murphy C, Misra R (2008) Dominance-based multiobjective simulated annealing. Evol Comput IEEE Trans 12(3):323–342

    Article  Google Scholar 

  • Srinivas N, Deb K (1994) Muiltiobjective optimization using nondominated sorting in genetic algorithms. Evol Comput 2(3):221–248

    Article  Google Scholar 

  • Van Veldhuizen DA, Lamont GB (2000) On measuring multiobjective evolutionary algorithm performance. In: Evolutionary computation, 2000. Proceedings of the 2000 Congress on, IEEE

  • Van Veldhuizen DA, Lamont GB (1998) Multiobjective evolutionary algorithm research: a history and analysis. Technical Report TR-98-03, Department of Electrical and Computer Engineering, Graduate School of Engineering, Air Force Institute of Technology, Wright-Patterson AFB, Ohio

  • Wang J, Liu W, Zhang W, Yang B (2013) Multi-objective particle swarm optimization based on self-update and grid strategy. In: Proceedings of the 2012 International Conference on Information Technology and Software Engineering, Springer

  • Yang F-C, Ni B (2014) Water flow-like optimization algorithm for multi-objective continuous optimization problem. In: Proceedings of 2013 4th International Asia Conference on Industrial Engineering and Management Innovation (IEMI2013), Springer

  • Zitzler E, Deb K, Thiele L (2000) Comparison of multiobjective evolutionary algorithms: empirical results. Evol Comput 8(2):173–195

    Article  Google Scholar 

  • Zitzler E, Laumanns M, Thiele L (2001) SPEA2: improving the strength Pareto evolutionary algorithm. Eidgenössische Technische Hochschule Zürich (ETH), Institut für Technische Informatik und Kommunikationsnetze (TIK)

  • Zitzler E, Thiele L (1999) Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. Evol Comput IEEE Trans 3(4):257–271

    Article  Google Scholar 

Download references

Acknowledgments

This research was funded by a Knowledge Transfer Program (KTP) Grant in collaboration with Unimap and Myreka Sdn Bhd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Jer Lim.

Additional information

Communicated by E. Lughofer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lim, W.J., Jambek, A.B. & Neoh, S.C. Kursawe and ZDT functions optimization using hybrid micro genetic algorithm (HMGA). Soft Comput 19, 3571–3580 (2015). https://doi.org/10.1007/s00500-015-1767-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-015-1767-5

Keywords

Navigation