An approach to facial expression recognition integrating radial basis function kernel and multidimensional scaling analysis | Soft Computing Skip to main content
Log in

An approach to facial expression recognition integrating radial basis function kernel and multidimensional scaling analysis

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

To better deal with high dimensions and extract the essential feature of facial expression images in facial expression recognition task, a novel approach integrating radial basis function kernel and multidimensional scaling analysis is proposed in this paper. Firstly, the radial basis function kernel is invoked to map facial expression images to the Hilbert space. Then, Hilbert distance is substituted for the Euclidean distance and a neighbor graph is constructed to express the relationship between data points by employing k nearest neighbor method. Finally, we apply the modified MDS algorithm to reduce the dimension and extract features of facial expression images. Experiments results on the JAFFE database show that this proposed algorithm performs better than Isomap algorithm and supervised Isomap algorithm, and it is more feasible and effective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Alvarez-Meza A, Valencia-Aguirre J, Daza-Santacoloma G, Castellanos-Dominguez G (2011) Global and local choice of the number of nearest neighbors in locally linear embedding. Pattern Recogn Lett 32:2171–2177

    Article  Google Scholar 

  • Chen C, Zhang J, Fleischer R (2010) Distance approximating dimension reduction of Riemannian manifolds. IEEE Trans Syst Man Cybern Part B Cybern 40:208–217

    Article  Google Scholar 

  • Cheon Y, Kim D (2009) Natural facial expression recognition using differential-AAM and manifold learning. Pattern Recogn 42:1340–1350

    Article  MATH  Google Scholar 

  • Dai Z, Wang J (2011) Robust Laplacian eigenmap. Appl Res Comput 28(9):3249–3252

    MathSciNet  Google Scholar 

  • Di Martino F, Loia V, Sessa S (2010) Fuzzy transforms method and attribute dependency in data analysis. Inform Sci 180(3):493–505

    Article  MATH  MathSciNet  Google Scholar 

  • Ding W, Yongqing F (2011) Automatic target recognition based on kPCA feature extraction algorithm. Appl Sci Technol 38(9):32–36

    Google Scholar 

  • Fernandez-Navarro F, Hervas-Martinez C (2011) Evolutionary q-Gaussian radial basis function neural networks for multiclassification. Neural Netw 24:779–784

    Article  MATH  Google Scholar 

  • Graf ABA, Wichmann FA (2002) Gender classification of human faces. Biol Motiv Comput Vis 2525:491–501

    Google Scholar 

  • Han XH, Chen YW, Ruan X (2012) Multilinear supervised neighborhood embedding of a local descriptor tensor for scene/object recognition. IEEE Trans Image Process 21:1314–1326

    Article  MathSciNet  Google Scholar 

  • He X, Yan S, Hu Y, Niyogi P, Zhang HJ (2005) Face recognition using Laplacianfaces. IEEE Trans Pattern Anal Mach Intell 27:328–340

    Article  Google Scholar 

  • Hughes NP, Tarassenko L (2003) Novel signal shape descriptors through wavelet transforms and dimensionality reduction. In: Proceedings of SPIE, Wavelets: applications in signal and image processing X, vol 5207, pp 763–773

  • Jenkins OC, Mataric MJ (2002) Deriving action and behavior primitives from human motion Data. In: Proceedings of IEEE/RSJ international conference on intelligent robots and systems, vol 3, pp 2551–2556

  • Jiang L, Zhu B, Rao X, Berney G, Tao Y (2007) Discrimination of black walnut shell and pulp in hyperspectral fluorescence imagery using Gaussian kernel function approach. J Food Eng 81:108–117

    Google Scholar 

  • Kim TK, Kittler J, Cipolla R (2010) On-line learning of mutually orthogonal subspaces for face recognition by image sets. IEEE Trans Image Process 19:1067–1074

    Google Scholar 

  • Li A, Shan S, Gao W (2012) Coupled bias-variance tradeoff for cross-pose face recognition. IEEE Trans Image Process 21:305–315

    Article  MathSciNet  Google Scholar 

  • Lim IS, Ciechomski PH, Sarni S, Thalmann D (2003) Planar arrangement of high-dimensional biomedical data sets by Isomap coordinates. Proceedings of the16th IEEE symposium on computer-Based medical systems, pp 50–55

  • Sebe N, Lew M, Sun Y, Cohen I, Gevers T, Huang T (2007) Authentic facial expression analysis. Image Vis Comput 25:1856–1863

    Article  Google Scholar 

  • Sindhwani V, Niyogi P, Belkin M (2005) Beyond the point cloud: from transductive to semi-supervised learning. In: Proceedings of 2005 international conference of machine learning. ACM Press, New York, pp 824–831

  • Smola A, Scholkopf B (2004) A tutorial on support vector regression. Stat Comput 14(2):199–222

    Article  MathSciNet  Google Scholar 

  • Tenenbaum J, de Silva V, Langford J (2000) A global geometric framework for nonlinear dimensionality reduction. Science 290:319–2322

    Article  Google Scholar 

  • Tenenbaum JB, de Silva V, Langford JC (2002) The Isomap algorithm and topological stability response. Science 295:5552–5559

    Google Scholar 

  • Tsai Flora S (2012) A visualization metric for dimensionality reduction. Expert Syst Appl 39:1747–1752

    Article  Google Scholar 

  • van der Maaten LJP, Postma EO, van den Herick HJ (2009) Dimensionality reduction: a comparative review. Tilburg University Technical Report, TiCC-TR 2009-005, vol 10, pp 1–35

  • Wang Z, Sun X (2012) Manifold adaptive kernel local Fisher discriminant analysis for face recognition. J Multiméd 7(6):387–393

    Google Scholar 

  • Wang H, Chen S, Hu Z, Zheng W (2008) Locality-preserved maximum information projection. IEEE Trans Neural Netw 19:571–585

    Article  Google Scholar 

  • Wang J, Haiping L, Juwei L (2009) Gaussian kernel optimization for pattern classification. Pattern Recogn 42:1237–1247

    Article  MATH  Google Scholar 

  • Xiao R, Zhao Q, Zhang D, Shi P (2011) Facial expression recognition on multiple manifolds. Pattern Recogn 44:107–116

    Article  MATH  Google Scholar 

  • Xue-lian Y, Xue-gang W, Ben-yong L (2008) Radar target recognition using range profiles based on KLLE and KNR. Modern Radar 30(10):39–42

    Google Scholar 

  • Yan S, Xu D, Zhang B, Zhang HJ, Yang Q, Lin S (2007) Graph embedding and extensions: a general framework for dimensionality reduction. IEEE Trans Pattern Anal Mach Intell 29:40–51

    Article  Google Scholar 

  • Yang Y, Yang S (2011) Study of emotion recognition based on surface electromyography and improved least squares support vector machine. J Comput 6(8):1707–1714

    Article  Google Scholar 

  • Yuan J, Bo L, Wang K (2009) Adaptive spherical Gaussian kernel in sparse Bayesian learning framework for nonlinear regression. Expert Syst Appl 36:3982–3989

    Article  Google Scholar 

  • Zafeiriou S, Tzimiropoulos G, Petrou M, tathaki TS (2012) Regularized kernel discriminant analysis with a robust kernel for face recognition and verification. IEEE Trans Neural Netw Learn Syst 23:526–534

    Article  Google Scholar 

  • Zhang T, Fang B, Tang YY, He G, Wen J (2008) Topology preserving non-negative matrix factorization for face recognition. IEEE Trans Image Process 17:574–584

    Article  MathSciNet  Google Scholar 

  • Zhi-yong L, Guo-can F, Jue W (2010) Locally linear embedding and its application in facial expressions recognition. J Jiangxi Normal Univ (Natural Sciences Edition) 34(3):362–370

    Google Scholar 

Download references

Acknowledgments

This work is supported by National Natural Science Foundation of China (No. 30670576) and Beijing Natural Science Foundation (No. 4122018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiyun Li.

Additional information

Communicated by V. Loia.

S. Wang and Z. Zhuo contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, S., Zhuo, Z., Yang, H. et al. An approach to facial expression recognition integrating radial basis function kernel and multidimensional scaling analysis. Soft Comput 18, 1363–1371 (2014). https://doi.org/10.1007/s00500-013-1149-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-013-1149-9

Keywords

Navigation