Optimization of interval type-2 fuzzy logic controllers using evolutionary algorithms | Soft Computing Skip to main content
Log in

Optimization of interval type-2 fuzzy logic controllers using evolutionary algorithms

  • Focus
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

A method for designing optimal interval type-2 fuzzy logic controllers using evolutionary algorithms is presented in this paper. Interval type-2 fuzzy controllers can outperform conventional type-1 fuzzy controllers when the problem has a high degree of uncertainty. However, designing interval type-2 fuzzy controllers is more difficult because there are more parameters involved. In this paper, interval type-2 fuzzy systems are approximated with the average of two type-1 fuzzy systems, which has been shown to give good results in control if the type-1 fuzzy systems can be obtained appropriately. An evolutionary algorithm is applied to find the optimal interval type-2 fuzzy system as mentioned above. The human evolutionary model is applied for optimizing the interval type-2 fuzzy controller for a particular non-linear plant and results are compared against an optimal type-1 fuzzy controller. A comparative study of simulation results of the type-2 and type-1 fuzzy controllers, under different noise levels, is also presented. Simulation results show that interval type-2 fuzzy controllers obtained with the evolutionary algorithm outperform type-1 fuzzy controllers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Castillo O, Melin P (2001) Soft computing for control of non-linear dynamical systems. Springer, Heidelberg

    MATH  Google Scholar 

  • Castillo O, Melin P (2003) Soft computing and fractal theory for intelligent manufacturing. Springer, Heidelberg

    MATH  Google Scholar 

  • Castillo O, Melin P (2004) A new approach for plant monitoring using type-2 fuzzy logic and fractal theory. Int J Gen Syst 33:305–319

    Article  MATH  Google Scholar 

  • Castillo O, Melin P (2007) Type-2 fuzzy logic: theory and applications. Springer, Heidelberg

    Book  Google Scholar 

  • Castillo O, Melin P (2008) Intelligent systems with interval type-2 fuzzy logic. Int J Innovat Comput Inf Control 4:771–783

    Google Scholar 

  • Castro JR, Castillo O, Melin P, Rodriguez-Diaz A (2009) A hybrid learning algorithm for a class of interval type-2 fuzzy neural networks. Inf Sci 179:2175–2193

    Article  MATH  Google Scholar 

  • Deb K (2002) Multi-objective optimization using evolutionary algorithms. Wiley, Great Britain

    Google Scholar 

  • Deshpande PB, Ash RH (1988) Computer process control with advanced control applications. Instrument Society of America, USA

  • Hagras HA (2004) Hierarchical type-2 fuzzy logic control architecture for autonomous mobile robots. IEEE Trans Fuzzy Syst 12:524–539

    Article  Google Scholar 

  • Ingle VK, Proakis JG (2000) Digital signal processing using MATLAB. Brooks/Cole Publishing Company

  • Jang JSR, Sun CT, Mizutani E (1997) Neuro-fuzzy and soft computing, a computational approach to learning and machine intelligence, Matlab Curriculum Series. Prentice Hall, New Jersey

    Google Scholar 

  • Karnik NN, Mendel JM (1999) Applications of type-2 fuzzy logic systems to forecasting of time-series. Inf Sci 120:89–111

    Article  MATH  Google Scholar 

  • Karnik NN, Mendel JM (2001a) Operations on type-2 fuzzy sets. Int J Fuzzy Sets Syst 122:327–348

    Article  MathSciNet  MATH  Google Scholar 

  • Karnik NN, Mendel JM (2001b) Centroid of a type-2 fuzzy set. Inf Sci 132(1–4):195–220

    Article  MathSciNet  MATH  Google Scholar 

  • Karnik NN, Mendel JM, Liang Q (1999) Type-2 fuzzy logic systems. IEEE Trans Fuzzy Syst 7:643–658

    Article  Google Scholar 

  • Karnik NN, Liang Q, Mendel JM (2001) Type-2 fuzzy logic software. Available online at http://sipi.usc.edu/mendel/software/

  • Klir GJ, Yuan B (1995) Fuzzy sets and fuzzy logic: theory and applications. Prentice Hall, New York

    MATH  Google Scholar 

  • Kumar P, Bauer P (2009) Progressive design methodology for complex engineering systems based on multiobjective genetic algorithms and linguistic decision making. Soft Comput 13:649–679

    Article  Google Scholar 

  • Liang Q, Mendel JM (2000) Interval type-2 fuzzy logic systems: theory and design. IEEE Trans Fuzzy Syst 8:535–550

    Article  Google Scholar 

  • Mamdani EH (1993) Twenty years of fuzzy control: experiences gained and lessons learn. In: Marks RJ (ed) Fuzzy Logic Technology and Applications. IEEE Press, New Jersey

    Google Scholar 

  • Martinez R, Castillo O, Aguilar LT (2009) Optimization of interval type-2 fuzzy logic controllers for a perturbed autonomous wheeled mobile robot using Genetic Algorithms. Inf Sci 179:2158–2174

    Article  MATH  Google Scholar 

  • Melin P, Castillo O (2002) Intelligent control of non-linear dynamic plants using type-2 fuzzy logic and neural networks. In: Proceedings of the Annual Meeting of the North American Fuzzy Information Processing Society

  • Melin P, Castillo O (2003) A new method for adaptive model-based control of non-linear plants using type-2 fuzzy logic and neural networks intelligent control of non-linear dynamic plants using type-2 fuzzy logic and neural networks. In: Proceedings of the 12th IEEE conference on fuzzy systems

  • Melin P, Castillo O (2004) A new method for adaptive control of non-linear plants using type-2 fuzzy logic and neural networks. Int J Gen Syst 33:289–304

    Article  MATH  Google Scholar 

  • Mendel JM (1998) Type-2 fuzzy logic systems: type-reduction. In: Proceedings of IEEE syst., man, cybern. conf., San Diego

  • Mendel JM (1999) Computing with words, when words can mean different things to different people. In: Int. ICSC Congress Computat. Intell. Methods Applications, Rochester, New York

  • Mendel JM (2000) Uncertainty, fuzzy logic, and signal processing. Signal Process J 80:913–933

    Article  MATH  Google Scholar 

  • Mendel JM (2001) Uncertain rule-based fuzzy logic systems: introduction and new directions. Prentice Hall, New York

    MATH  Google Scholar 

  • Mendel JM (2005) On a 50% savings in the computation of the centroid of a symmetrical interval type-2 fuzzy set. Inf Sci 172:417–430

    Article  MathSciNet  Google Scholar 

  • Mendel JM, John RI (2002) Type-2 fuzzy sets made simple. IEEE Trans Fuzzy Syst 10:117–127

    Article  Google Scholar 

  • Mendel JM, Mouzouris GC (1999) Type-2 fuzzy logic systems. IEEE Trans Fuzzy Syst 7:643–658

    Article  Google Scholar 

  • Mizumoto M, Tanaka K (1976) Some properties of fuzzy sets of type-2. Inf Control 31:312–340

    Article  MathSciNet  MATH  Google Scholar 

  • Montiel O, Castillo O, Melin P, Diaz AR, Sepulveda R (2007) Human evolutionary model: a new approach to optimization. Inf Sci 177(10):2075–2098

    Article  Google Scholar 

  • Ozen T, Garibaldi JM (2003) Investigating adaptation in type-2 fuzzy logic systems applied to umbilical acid-base assessment. In: European symposium on intelligent technologies, hybrid systems and their implementation on smart adaptive systems (EUNITE 2003), Oulu, Finland

  • Sepulveda R, Castillo O, Melin P, Rodriguez-Diaz A, Montiel O (2007) Experimental study of intelligent controllers under uncertainty using type-1 and type-2 fuzzy logic. Inf Sci 177:2023–2048

    Article  Google Scholar 

  • Yager RR (1980) Fuzzy subsets of type II in decisions. J Cybern 10:137–159

    Article  MathSciNet  Google Scholar 

  • Zadeh LA (1971) Similarity relations and fuzzy ordering. Inf Sci 3:177–206

    Article  MathSciNet  MATH  Google Scholar 

  • Zadeh LA (1973) Outline of a new approach to the analysis of complex systems and decision processes. IEEE Trans Syst Man Cybern 3:28–44

    Article  MathSciNet  MATH  Google Scholar 

  • Zadeh LA (1975a) The concept of a linguistic variable and its application to approximate reasoning. Inf Sci 8:43–80

    Article  Google Scholar 

  • Zadeh LA (1975b) The concept of a linguistic variable and its application to approximate reasoning, Part 1. Inf Sci 8:199–249

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Castillo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castillo, O., Melin, P., Alanis, A. et al. Optimization of interval type-2 fuzzy logic controllers using evolutionary algorithms. Soft Comput 15, 1145–1160 (2011). https://doi.org/10.1007/s00500-010-0588-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-010-0588-9

Keywords

Navigation