van Kampen–Flores Theorem for Cell Complexes | Discrete & Computational Geometry Skip to main content
Log in

van Kampen–Flores Theorem for Cell Complexes

  • Published:
Discrete & Computational Geometry Aims and scope Submit manuscript

Abstract

The van Kampen–Flores theorem states that the n-skeleton of a \((2n+2)\)-simplex does not embed into \({\mathbb {R}}^{2n}\). We give two proofs for its generalization to a continuous map from a skeleton of a certain regular CW complex (e.g. a simplicial sphere) into a Euclidean space. We will also generalize Frick and Harrison’s result on the chirality of embeddings of the n-skeleton of a \((2n+2)\)-simplex into \({\mathbb {R}}^{2n+1}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blagojević, P.V.M., Frick, F., Ziegler, G.M.: Tverberg plus constraints. Bull. Lond. Math. Soc. 46(5), 953–967 (2014)

    Article  MathSciNet  Google Scholar 

  2. Blagojević, P.V.M., Ziegler, G.M.: Beyond the Borsuk–Ulam theorem: the topological Tverberg story. In: A Journey Through Discrete Mathematics, pp. 273–341. Springer, Cham (2017)

  3. Flapan, E.: When Topology Meets Chemistry: A Topological Look at Molecular Chirality. Cambridge University Press, Cambridge (2000)

    Book  Google Scholar 

  4. Flores, A.: Über \(n\)-dimensionale Komplexe die im \(R_{2n+1}\) absolut selbstverschlungen sind. Ergeb. Math. Kolloq. 6, 4–7 (1933/1934)

  5. Frick, F., Harrison, M.: Spaces of embeddings: nonsingular bilinear maps, chirality, and their generalizations. Proc. Am. Math. Soc. 150(1), 423–437 (2022)

    MathSciNet  Google Scholar 

  6. Hara, Y., Kishimoto, D.: Note on the cohomology of finite cyclic coverings. Topol. Appl. 160(9), 1061–1065 (2013)

    Article  MathSciNet  Google Scholar 

  7. Hasui, S., Kishimoto, D., Takeda, M., Tsutaya, M.: Tverberg’s theorem for cell complexes. Bull. Lond. Math. Soc. (2023). https://doi.org/10.1112/blms.12829

    Article  MathSciNet  Google Scholar 

  8. Jackowski, S., Słomińska, J.: \(G\)-functors, \(G\)-posets and homotopy decompositions of \(G\)-spaces. Fund. Math. 169(3), 249–287 (2001)

    Article  MathSciNet  Google Scholar 

  9. van Kampen, E.R.: Komplexe in euklidischen Räumen. Abh. Math. Semin. Univ. Hamburg 9(1), 72–78 (1933)

    Article  Google Scholar 

  10. Kishimoto, D., Levi, R.: Polyhedral products over finite posets. Kyoto J. Math. 62(3), 615–654 (2022)

    Article  MathSciNet  Google Scholar 

  11. Rudyak, Yu.B.: On category weight and its applications. Topology 38(1), 37–55 (1999)

    Article  MathSciNet  Google Scholar 

  12. Sarkaria, K.S.: A generalized van Kampen–Flores theorem. Proc. Am. Math. Soc. 111(2), 559–565 (1991)

    Article  MathSciNet  Google Scholar 

  13. Volovikov, A.Yu.: On the van Kampen–Flores theorem. Math. Notes 59(5–6), 477–481 (1996)

  14. Ziegler, G.M., Živaljević, R.T.: Homotopy types of subspace arrangements via diagrams of spaces. Math. Ann. 295(3), 527–548 (1993)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the referees for useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takahiro Matsushita.

Additional information

Editor in Charge: János Pach

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The authors were partly supported by JSPS KAKENHI Grant Numbers JP17K05248 and JP19K03473 (Kishimoto), and JP19K14536 (Matsushita).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kishimoto, D., Matsushita, T. van Kampen–Flores Theorem for Cell Complexes. Discrete Comput Geom 71, 1081–1091 (2024). https://doi.org/10.1007/s00454-023-00559-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00454-023-00559-0

Keywords

Mathematics Subject Classification

Navigation