Circumscribing Polygons and Polygonizations for Disjoint Line Segments | Discrete & Computational Geometry Skip to main content
Log in

Circumscribing Polygons and Polygonizations for Disjoint Line Segments

  • Published:
Discrete & Computational Geometry Aims and scope Submit manuscript

Abstract

Given a planar straight-line graph \(G=(V,E)\) in \(\mathbb {R}^2\), a circumscribing polygon of G is a simple polygon P whose vertex set is V, and every edge in E is either an edge or an internal diagonal of P. A circumscribing polygon is a polygonization for G if every edge in E is an edge of P. We prove that every arrangement of n disjoint line segments in the plane has a subset of size \(\Omega (\sqrt{n})\) that admits a circumscribing polygon, which is the first improvement on this bound in 20 years. We explore relations between circumscribing polygons and other problems in combinatorial geometry, and generalizations to \(\mathbb {R}^3\). We show that it is NP-complete to decide whether a given graph G admits a circumscribing polygon, even if G is 2-regular. Settling a 30-year old conjecture by Rappaport, we also show that it is NP-complete to determine whether a geometric matching admits a polygonization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Notes

  1. A more accurate term would be plane straight-line graph, but we decided to use planar straight-line graph as it is a much more commonly used term in the literature.

  2. We thank Joe Mitchell for introducing us to the high dimensional variations of this problem.

References

  1. Agarwal, P.K., Hurtado, F., Toussaint, G.T., Trias, J.: On polyhedra induced by point sets in space. Discrete Appl. Math. 156(1), 42–54 (2008)

    Article  MathSciNet  Google Scholar 

  2. Akitaya, H.A., Korman, M., Rudoy, M., Souvaine, D.L., Tóth, C.D.: Circumscribing polygons and polygonizations for disjoint line segments. In: 35th International Symposium on Computational Geometry (Portland 2019). Leibniz Int. Proc. Inform., vol. 129, # 9. Leibniz-Zent. Inform., Wadern (2019)

  3. Barequet, G., Benbernou, N., Charlton, D., Demaine, E.D., Demaine, M.L., Ishaque, M., Lubiw, A., Schulz, A., Souvaine, D.L., Toussaint, G.T., Winslow, A.: Bounded-degree polyhedronization of point sets. Comput. Geom. 46(2), 148–153 (2013)

    Article  MathSciNet  Google Scholar 

  4. Cardinal, J., Hoffmann, M., Kusters, V., Tóth, C.D., Wettstein, M.: Arc diagrams, flip distances, and Hamiltonian triangulations. Comput. Geom. 68, 206–225 (2018)

    Article  MathSciNet  Google Scholar 

  5. Chambers, E.W., Eppstein, D., Goodrich, M.T., Löffler, M.: Drawing graphs in the plane with a prescribed outer face and polynomial area. J. Graph Algorithms Appl. 16(2), 243–259 (2012)

    Article  MathSciNet  Google Scholar 

  6. Chiba, N., Nishizeki, T.: The Hamiltonian cycle problem is linear-time solvable for \(4\)-connected planar graphs. J. Algorithms 10(2), 187–211 (1989)

    Article  MathSciNet  Google Scholar 

  7. Di Giacomo, E., Liotta, G.: The Hamiltonian augmentation problem and its applications to graph drawing. In: 4th International Workshop Algorithms and Computation (WALCOM) (Dhaka 2010). Lecture Notes in Computer Science, vol. 5942, pp. 35–46. Springer, Berlin (2010)

  8. García, A., Noy, M., Tejel, J.: Lower bounds on the number of crossing-free subgraphs of \(K_N\). Comput. Geom. 16(4), 211–221 (2000)

    Article  MathSciNet  Google Scholar 

  9. Garey, M.R., Johnson, D.S., Tarjan, R.E.: The planar Hamiltonian circuit problem is NP-complete. SIAM J. Comput. 5(4), 704–714 (1976)

    Article  MathSciNet  Google Scholar 

  10. Grünbaum, B.: Hamiltonian polygons and polyhedra. Geombinatorics 3(3), 83–89 (1994)

    MathSciNet  MATH  Google Scholar 

  11. Hoffmann, M., Tóth, C.D.: Segment endpoint visibility graphs are Hamiltonian. Comput. Geom. 26(1), 47–68 (2003)

    Article  MathSciNet  Google Scholar 

  12. Hurtado, F., Tóth, C.D.: Plane geometric graph augmentation: a generic perspective. In: Thirty Essays on Geometric Graph Theory, pp. 327–354. Springer, New York (2013)

  13. Ishaque, M., Souvaine, D.L., Tóth, C.D.: Disjoint compatible geometric matchings. Discrete Comput. Geom. 49(1), 89–131 (2013)

    Article  MathSciNet  Google Scholar 

  14. Mirzaian, A.: Hamiltonian triangulations and circumscribing polygons of disjoint line segments. Comput. Geom. 2(1), 15–30 (1992)

    Article  MathSciNet  Google Scholar 

  15. O’Rourke, J., Rippel, J.: Two segment classes with Hamiltonian visibility graphs. Comput. Geom. 4(4), 209–218 (1994)

    Article  MathSciNet  Google Scholar 

  16. Ozeki, K., Van Cleemput, N., Zamfirescu, C.T.: Hamiltonian properties of polyhedra with few 3-cuts—a survey. Discrete Math. 341(9), 2646–2660 (2018)

    Article  MathSciNet  Google Scholar 

  17. Pach, J., Rivera-Campo, E.: On circumscribing polygons for line segments. Comput. Geom. 10(2), 121–124 (1998)

    Article  MathSciNet  Google Scholar 

  18. Rappaport, D.: Computing simple circuits from a set of line segments is NP-complete. SIAM J. Comput. 18(6), 1128–1139 (1989)

    Article  MathSciNet  Google Scholar 

  19. Rappaport, D., Imai, H., Toussaint, G.T.: Computing simple circuits from a set of line segments. Discrete Comput. Geom. 5(3), 289–304 (1990)

    Article  MathSciNet  Google Scholar 

  20. Sharir, M., Sheffer, A., Welzl, E.: Counting plane graphs: perfect matchings, spanning cycles, and Kasteleyn’s technique. J. Combin. Theory Ser. A 120(4), 777–794 (2013)

    Article  MathSciNet  Google Scholar 

  21. Tutte, W.T.: Convex representations of graphs. Proc. Lond. Math. Soc. 10, 304–320 (1960)

    Article  MathSciNet  Google Scholar 

  22. Urabe, M., Watanabe, M.: On a counterexample to a conjecture of Mirzaian. Comput. Geom. 2(1), 51–53 (1992)

    Article  MathSciNet  Google Scholar 

  23. Whitney, H.: A theorem on graphs. Ann. Math. 32(2), 378–390 (1931)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Editor in Charge: János Pach

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A preliminary version of this paper appeared as research supported in part by the NSF awards CCF-1422311 and CCF-1423615. Akitaya was partially supported by NSERC.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akitaya, H.A., Korman, M., Korten, O. et al. Circumscribing Polygons and Polygonizations for Disjoint Line Segments. Discrete Comput Geom 68, 218–254 (2022). https://doi.org/10.1007/s00454-021-00355-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00454-021-00355-8

Keywords

Mathematics Subject Classification