Computing the Flip Distance Between Triangulations | Discrete & Computational Geometry
Skip to main content

Computing the Flip Distance Between Triangulations

  • Published:
Discrete & Computational Geometry Aims and scope Submit manuscript

Abstract

Let \(\mathcal{{T}}\) be a triangulation of a set \(\mathcal{{P}}\) of n points in the plane, and let e be an edge shared by two triangles in \(\mathcal{{T}}\) such that the quadrilateral Q formed by these two triangles is convex. A flip of e is the operation of replacing e by the other diagonal of Q to obtain a new triangulation of \(\mathcal{{P}}\) from \(\mathcal{{T}}\). The flip distance between two triangulations of \(\mathcal{{P}}\) is the minimum number of flips needed to transform one triangulation into the other. The Flip Distance problem asks if the flip distance between two given triangulations of \(\mathcal{{P}}\) is at most k, for some given \(k \in \mathbb {N}\). It is a fundamental and a challenging problem. We present an algorithm for the Flip Distance problem that runs in time \(\mathcal {O}(n + k \cdot c^{k})\), for a constant \(c \le 2 \cdot 14^{11}\), which implies that the problem is fixed-parameter tractable. We extend our results to triangulations of polygonal regions with holes, and to labeled triangulated graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. If an action \(\sigma \) involves flipping an edge e, then \(\sigma \) is performed only when a flip of e is admissible.

References

  1. Aichholzer, O., Alvarez, V., Hackl, T., Pilz, A., Speckmann, B., Vogtenhuber, B.: An improved lower bound on the minimum number of triangulations. In: 32nd International Symposium on Computational Geometry (SoCG 2016). Leibniz International Proceedings in Informatics, vol. 51, pp. 7:1–7:16. Leibniz-Zentrum fuer Informatik, Dagstuhl (2016)

  2. Aichholzer, O., Hurtado, F., Noy, M.: A lower bound on the number of triangulations of planar point sets. Comput. Geom. 29(2), 135–145 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Aichholzer, O., Mulzer, W., Pilz, A.: Flip distance between triangulations of a simple polygon is NP-complete. Discrete Comput. Geom. 54(2), 368–389 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bose, P., Hurtado, F.: Flips in planar graphs. Comput. Geom. 42(1), 60–80 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brodal, G.S., Fagerberg, R.: Dynamic representation of sparse graphs. In: Dehne, F., et al. (eds.) Algorithms and Data Structures. Lecture Notes in Computer Science, vol. 1663, pp. 342–351. Springer, Berlin (1999)

    Chapter  Google Scholar 

  6. Cleary, S., St. John, K.: Rotation distance is fixed-parameter tractable. Inf. Process. Lett. 109(16), 918–922 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Diestel, R.: Graph Theory. Graduate Texts in Mathematics. Springer, Heidelberg (2010)

    Book  MATH  Google Scholar 

  8. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Monographs in Computer Science. Springer, New York (1999)

    Book  MATH  Google Scholar 

  9. Gao, Z., Urrutia, J., Wang, J.: Diagonal flips in labelled planar triangulations. Graphs Comb. 17(4), 647–657 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hanke, S., Ottmann, T., Schuierer, S.: The edge-flipping distance of triangulations. J. UCS 2(8), 570–579 (1996)

    MathSciNet  MATH  Google Scholar 

  11. Hopcroft, J., Tarjan, R.: Efficient planarity testing. J. Assoc. Comput. Mach. 21(4), 549–568 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hopcroft, J.E., Wong, J.K.: Linear time algorithm for isomorphism of planar graphs. In: Book, R.V., et al. (eds.) Sixth Annual ACM Symposium on Theory of Computing, pp. 172–184. Association for Computing Machinery, New York (1974)

    Chapter  Google Scholar 

  13. Hurtado, F., Noy, M., Urrutia, J.: Flipping edges in triangulations. Discrete Comput. Geom. 22(3), 333–346 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kanj, I., Xia, G.: Flip distance is in \(FPT\) Time \({\cal{O}}(n+ k \cdot c^k)\). In: Mayr, E.W., Ollinger, N. (eds.) 32nd International Symposium on Theoretical Aspects of Computer Science. Leibniz International Proceedings in Informatics, vol. 30, pp. 500–512. Leibniz-Zentrum fuer Informatik, Dagstuhl (2015)

  15. Kocay, W., Kreher, D.L.: Graphs, Algorithms, and Optimization. Discrete Mathematics and Its Applications, 2nd edn. CRC Press, Boca Raton (2017)

    Google Scholar 

  16. Lawson, C.L.: Transforming triangulations. Discrete Math. 3(4), 365–372 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  17. De Loera, J.A., Rambau, J., Santos, F.: Triangulations: Structures for Algorithms and Applications. Algorithms and Computation in Mathematics, vol. 25. Springer, Berlin (2010)

  18. Lubiw, A., Pathak, V.: Flip distance between two triangulations of a point set is NP-complete. Comput. Geom. 49, 17–23 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lucas, J.M.: An improved kernel size for rotation distance in binary trees. Inf. Process. Lett. 110(12–13), 481–484 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Mori, R., Nakamoto, A., Ota, K.: Diagonal flips in Hamiltonian triangulations on the sphere. Graphs Comb. 19(3), 413–418 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. Mouawad, A.E., Nishimura, N., Raman, V.: Vertex cover reconfiguration and beyond. In: Ahn, H.-K., et al. (eds.) Algorithms and Computation. Lecture Notes in Computer Science, vol. 8889, pp. 452–463. Springer, Cham (2014)

    Google Scholar 

  22. Mouawad, A.E., Nishimura, N., Raman, V., Simjour, N., Suzuki, A.: On the parameterized complexity of reconfiguration problems. In: Gutin, G., Szeider, S. (eds.) Parameterized and Exact Computation. Lecture Notes in Computer Science, vol. 8246, pp. 281–294. Springer, Cham (2013)

    Chapter  Google Scholar 

  23. Mouawad, A.E., Nishimura, N., Raman, V., Wrochna, M.: Reconfiguration over tree decompositions. In: Cygan, M., Heggernes, P. (eds.) Parameterized and Exact computation. Lecture Notes in Computer Science, vol. 8894, pp. 246–257. Springer, Cham (2014)

    Google Scholar 

  24. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford Lecture Series in Mathematics and Its Applications, vol. 31. Oxford University Press, Oxford (2006)

    Book  MATH  Google Scholar 

  25. Okabe, A., Boots, B., Sugihara, K.: Spatial Tessellations: Concepts and Applications of Voronoĭ Diagrams. Applied Probability and Statistics. Wiley Series in Probability and Mathematical Statistics, Wiley, Chichester (1992)

  26. Pilz, A.: Flip distance between triangulations of a planar point set is APX-hard. Comput. Geom. 47(5), 589–604 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Saalfeld, A.: Joint triangulations and triangulation maps. In: CG87 Third Annual Symposium on Computational Geometry, pp. 195–204. Association for Computing Machinery, New York (1987)

  28. Schumaker, L.L.: Triangulations in CAGD. IEEE Comput. Graph. Appl. 13(1), 47–52 (1993)

    Article  Google Scholar 

  29. Sibson, R.: Locally equiangular triangulations. Comput. J. 21(3), 243–245 (1978)

    Article  MathSciNet  Google Scholar 

  30. Sleator, D.D., Tarjan, R.E., Thurston, W.P.: Rotation distance, triangulations, and hyperbolic geometry. J. Am. Math. Soc. 1(3), 647–681 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  31. Sleator, D.D., Tarjan, R.E., Thurston, W.P.: Short encodings of evolving structures. SIAM J. Discrete Math. 5(3), 428–450 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  32. Wagner, K.: Bemerkungen zum Vierfarbenproblem. Jahresber. Dtsch. Math.-Ver. 46, 26–32 (1936)

    MATH  Google Scholar 

  33. Watson, D.F., Philip, G.M.: Systematic triangulations. Comput. Vis. Graph. Image Process. 22(2), 310 (1983)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iyad Kanj.

Additional information

Editor in Charge: Günter M. Ziegler

An extended abstract of this work (without the complete proofs and the extension to labeled triangulated graphs) appears in [14].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanj, I., Sedgwick, E. & Xia, G. Computing the Flip Distance Between Triangulations. Discrete Comput Geom 58, 313–344 (2017). https://doi.org/10.1007/s00454-017-9867-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00454-017-9867-x

Keywords