Random Walks, Bisections and Gossiping in Circulant Graphs | Algorithmica Skip to main content
Log in

Random Walks, Bisections and Gossiping in Circulant Graphs

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

Circulant graphs are regular graphs based on Cayley graphs defined on the Abelian group \(\mathbb{Z}_{n}\). They are popular network topologies that arise in distributed computing.

Using number theoretical tools, we first prove two main results for random directed k-regular circulant graphs with n vertices, when n is sufficiently large and k is fixed. First, for any fixed ε>0, n=p prime and Lp 1/k(logp)1+1/k+ε, walks of length at most L terminate at every vertex with asymptotically the same probability. Second, for any n, there is a polynomial time algorithm that for almost all undirected 2r-regular circulant graphs finds a vertex bisector and an edge bisector, both of size less than n 1−1/r+o(1). We then prove that the latter result also holds for all (rather than for almost all) 2r-regular circulant graphs with n=p, prime, vertices, while, in general, it does not hold for composite n.

Using the bisection results, we provide lower bounds on the number of rounds required by any gossiping algorithms for any n. We introduce generic distributed algorithms to solve the gossip problem in any circulant graphs. We illustrate the efficiency of these algorithms by giving nearly matching upper bounds of the number of rounds required by these algorithms in the vertex-disjoint and the edge-disjoint paths communication models in particular circulant graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ádám, A.: Research problem 2–10. J. Comb. Theory 3, 393 (1967)

    Google Scholar 

  2. Alon, N., Avin, C., Kouck, M., Kozma, G., Lotker, Z., Tuttle, M.R.: Many random walks are faster than one. Comb. Probab. Comput. 20, 481–502 (2011)

    Article  MATH  Google Scholar 

  3. Amir, G., Gurel-Gurevich, O.: The diameter of a random Cayley graph of \(\mathbb{Z}_{q}\). In: Groups Complex. Crypto, vol. 2, pp. 59–65 (2010)

    Google Scholar 

  4. Annexstein, F., Baumslag, M.: On the diameter and bisector size of Cayley graphs. Math. Syst. Theory 26, 271–291 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  5. Attiya, H., van Leeuwen, J., Santoro, N., Zaks, S.: Efficient elections in chordal ring networks. Algorithmica 4, 437–446 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  6. Barrière, L., Fàbrega, J.: Edge-bisection of chordal rings. In: Proc. 25th MFCS. LNCS, pp. 162–171. Springer, Berlin (2004)

    Google Scholar 

  7. Barrière, L., Cohen, J., Mitjana, M.: Gossiping in chordal rings under the line model. Theor. Comput. Sci. 264, 53–64 (2001)

    Article  MATH  Google Scholar 

  8. Bermond, J.-C., Comellas, F., Hsu, D.F.: Distributed loop computer networks: a survey. J. Parallel Distrib. Comput. 24, 2–10 (1995)

    Article  Google Scholar 

  9. Blackburn, S.R.: Node bisectors of Cayley graphs. Math. Syst. Theory 29, 589–598 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  10. Cai, J.-Y., Havas, G., Mans, B., Nerurkar, A., Seifert, J.-P., Shparlinski, I.: On routing in circulant graphs. In: Proc. 5th COCOON. LNCS, pp. 370–378. Springer, Berlin (1999)

    Google Scholar 

  11. Elspas, B., Turner, J.: Graphs with circulant adjacency matrices. J. Comb. Theory 9, 229–240 (1970)

    MathSciNet  Google Scholar 

  12. Hamidoune, Y.O., Serra, O.: On small cuts separating an Abelian Cayley graph into two equal parts. Math. Syst. Theory 29, 407–409 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  13. Hardy, G.H., Wright, E.M.: An Introduction to the Theory of Numbers, 5th edn. Clarendon, New York (1979)

    MATH  Google Scholar 

  14. Hromkovič, J., Klasing, R., Stöhr, E.A., Wagener, H.: Gossiping in vertex-disjoint paths mode in d-dimensional grids and planar graphs. Inf. Comput. 123, 17–28 (1995)

    Article  MATH  Google Scholar 

  15. Hromkovič, J., Klasing, R., Stöhr, E.A.: Dissemination of information in generalized communication modes. Comput. Artif. Intell. 15, 295–318 (1996)

    Google Scholar 

  16. Hromkovič, J., Klasing, R., Unger, W., Wagener, H.: Optimal algorithms for broadcast and gossip in the edge-disjoint path modes. Inf. Comput. 133, 1–33 (1997)

    Article  MATH  Google Scholar 

  17. Iwaniec, H., Kowalski, E.: Analytic Number Theory. Am. Math. Soc., Providence (2004)

    MATH  Google Scholar 

  18. Klasing, R.: The relationship between the gossip complexity in the vertex-disjoint paths mode and the vertex bisection width. Discrete Appl. Math. 83, 229–246 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  19. Laczkovich, M.: Discrepancy estimates for sets with small boundary. Studia Sci. Math. Hung. 30, 105–109 (1995)

    MATH  MathSciNet  Google Scholar 

  20. Leighton, F.T.: Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes. Morgan Kaufmann, San Mateo (1992)

    MATH  Google Scholar 

  21. Lovász, L.: Random Walks on Graphs: a Survey. Combinatorics, Paul Erdös Is Eighty, pp. 1–46. Bolyai Soc., Hungary (1993)

    Google Scholar 

  22. Mans, B.: Optimal distributed algorithms in unlabeled tori and chordal rings. J. Parallel Distrib. Comput. 46, 80–90 (1997)

    Article  MATH  Google Scholar 

  23. Mans, B., Shparlinski, I.E.: Bisecting and gossiping in circulant graphs. In: Proc. 6th LATIN. LNCS, pp. 589–598. Springer, Berlin (2004)

    Google Scholar 

  24. Mans, B., Shparlinski, I.E.: Random walks and bisections in random circulant graphs. In: Proc. 10th LATIN. LNCS, pp. 542–555. Springer, Berlin (2012)

    Google Scholar 

  25. Mans, B., Pappalardi, F., Shparlinski, I.: On the spectral Ádám property for circulant graphs. Discrete Math. 254, 309–329 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  26. Marklof, J., Strombergsson, A.: Diameters of random circulant graphs. Combinatorica. Available from: http://arxiv.org/abs/1103.3152 (2011, to appear)

  27. Muzychuk, M.: On Ádám’s conjecture for circulant graphs. Discrete Math. 167/168, 497–510 (1997). Erratum: Discrete Math. 176, 285–298 (1997)

    Article  MathSciNet  Google Scholar 

  28. Narayanan, L., Opatrny, J., Sotteau, D.: All-to-all optical routing in optimal chordal rings of degree 4. Algorithmica 29, 396–409 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  29. Niederreiter, H., Wills, J.M.: Diskrepanz und Distanz von Massen bezuglich konvexer und Jordanscher Mengen. Math. Z. 144, 125–134 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  30. Opatrny, J.: Uniform multi-hop all-to-all optical routings in rings. Theor. Comput. Sci. 297(1–3), 385–397 (2003)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the referees for constructive and thorough comments.

The research of B.M. by Australian Research Council Grant DP110104560, and that of I.E.S. by Australian Research Council Grants DP130100237 and Macquarie University Grant MQRDG1465020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Shparlinski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mans, B., Shparlinski, I. Random Walks, Bisections and Gossiping in Circulant Graphs. Algorithmica 70, 301–325 (2014). https://doi.org/10.1007/s00453-013-9810-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-013-9810-3

Keywords

Navigation