Fast Minor Testing in Planar Graphs | Algorithmica Skip to main content
Log in

Fast Minor Testing in Planar Graphs

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

Minor Containment is a fundamental problem in Algorithmic Graph Theory used as a subroutine in numerous graph algorithms. A model of a graph H in a graph G is a set of disjoint connected subgraphs of G indexed by the vertices of H, such that if {u,v} is an edge of H, then there is an edge of G between components C u and C v . A graph H is a minor of G if G contains a model of H as a subgraph. We give an algorithm that, given a planar n-vertex graph G and an h-vertex graph H, either finds in time \(\mathcal{O}(2^{\mathcal{O}(h)} \cdot n +n^{2}\cdot\log n)\) a model of H in G, or correctly concludes that G does not contain H as a minor. Our algorithm is the first single-exponential algorithm for this problem and improves all previous minor testing algorithms in planar graphs. Our technique is based on a novel approach called partially embedded dynamic programming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adler, I., Dorn, F., Fomin, F.V., Sau, I., Thilikos, D.M.: Faster parameterized algorithms for minor containment. In: Proc. of the 12th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT). LNCS, vol. 6139, pp. 322–333 (2010)

    Google Scholar 

  2. Adler, I., Dorn, F., Fomin, F.V., Sau, I., Thilikos, D.M.: Fast minor testing in planar graphs. In: Proc. of the 18th Annual European Symposium on Algorithms (ESA). LNCS, vol. 6346, pp. 97–109 (2010)

    Google Scholar 

  3. Alber, J., Bodlaender, H.L., Fernau, H., Kloks, T., Niedermeier, R.: Fixed parameter algorithms for dominating set and related problems on planar graphs. Algorithmica 33, 461–493 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Alon, N., Yuster, R., Zwick, U.: Color-coding. J. ACM 42(4), 844–856 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  5. Baker, B.S.: Approximation algorithms for NP-complete problems on planar graphs. J. ACM 41, 153–180 (1994)

    Article  MATH  Google Scholar 

  6. Bodlaender, H.L., Grigoriev, A., Koster, A.M.C.A.: Treewidth lower bounds with brambles. Algorithmica 51(1), 81–98 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Demaine, E.D., Fomin, F.V., Hajiaghayi, M.T., Thilikos, D.M.: Subexponential parameterized algorithms on graphs of bounded genus and H-minor-free graphs. J. ACM 52(6), 866–893 (2005)

    Article  MathSciNet  Google Scholar 

  8. Demaine, E.D., Hajiaghayi, M.: Bidimensionality. In: Kao, M.-Y. (ed.) Encyclopedia of Algorithms. Springer, Berlin (2008)

    Google Scholar 

  9. Demaine, E.D., Hajiaghayi, M.T.: Bidimensionality: new connections between FPT algorithms and PTASs. In: Proc. of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 590–601 (2005)

    Google Scholar 

  10. Demaine, E.D., Hajiaghayi, M.T., Kawarabayashi, K.I.: Algorithmic graph minor theory: decomposition, approximation, and coloring. In: Proc. of the 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 637–646 (2005)

    Chapter  Google Scholar 

  11. Diestel, R.: Graph Theory, vol. 173. Springer, Berlin (2005)

    MATH  Google Scholar 

  12. Dinneen, M., Xiong, L.: The Feasibility and Use of a Minor Containment Algorithm. Computer Science Technical Reports, vol. 171. University of Auckland, Auckland (2000)

    Google Scholar 

  13. Dorn, F.: Planar subgraph isomorphism revisited. In: Proc. of the 27th International Symposium on Theoretical Aspects of Computer Science (STACS), pp. 263–274 (2010)

    Google Scholar 

  14. Dorn, F., Fomin, F.V., Thilikos, D.M.: Subexponential parameterized algorithms. Comput. Sci. Rev. 2(1), 29–39 (2008)

    Article  Google Scholar 

  15. Dorn, F., Penninkx, E., Bodlaender, H.L., Fomin, F.V.: Efficient exact algorithms on planar graphs: exploiting sphere cut decompositions. Algorithmica 58(3), 790–810 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Berlin (1999)

    Book  Google Scholar 

  17. Fellows, M.R., Langston, M.A.: On search, decision and the efficiency of polynomial-time algorithms. J. Comput. Syst. Sci. 49, 769–779 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  18. Garey, M.R., Johnson, D.S.: Computers and Intractability, a Guide to the Theory of NP-Completeness. Freeman, New York (1979)

    MATH  Google Scholar 

  19. Gu, Q.-P., Tamaki, H.: Constant-factor approximations of branch-decomposition and largest grid minor of planar graphs in O(n 1+ε) time. In: Proc. of the 20th International Symposium Algorithms and Computation (ISAAC). LNCS, vol. 5878, pp. 984–993 (2009)

    Google Scholar 

  20. Gu, Q.P., Tamaki, H.: Improved bound on the planar branchwidth with respect to the largest grid minor size. Technical report SFU-CMPT-TR 2009-17, Simon Fraiser University, 2009

  21. Hicks, I.V.: Branch decompositions and minor containment. Networks 43(1), 1–9 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hopcroft, J.E., Wong, J.K.: Linear time algorithm for isomorphism of planar graphs (preliminary report). In: Proc. of the 6th Annual ACM Symposium on Theory of Computing (STOC), pp. 172–184 (1974)

    Chapter  Google Scholar 

  23. Kawarabayashi, K.I., Reed, B.A.: Hadwiger’s conjecture is decidable. In: Proc. of the 41st Annual ACM Symposium on Theory of Computing (STOC), pp. 445–454 (2009)

    Chapter  Google Scholar 

  24. Kawarabayashi, K.I., Wollan, P.: A shorter proof of the graph minor algorithm—the unique linkage theorem. In: Proc. of the 42st Annual ACM Symposium on Theory of Computing (STOC), pp. 687–694 (2010)

    Google Scholar 

  25. Li, Z., Nakano, S.-I.: Efficient generation of plane triangulations without repetitions. In: Proc. of the 28th International Colloquium on Automata, Languages and Programming (ICALP). LNCS, vol. 2076, pp. 433–443 (2001)

    Chapter  Google Scholar 

  26. Lipton, R.J., Tarjan, R.E.: Applications of a planar separator theorem. SIAM J. Comput. 9, 615–627 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  27. Mohar, B., Thomassen, C.: Graphs on Surfaces. Johns Hopkins University Press, Baltimore (2001)

    MATH  Google Scholar 

  28. Osthus, D., Prömel, H.J., Taraz, A.: On random planar graphs, the number of planar graphs and their triangulations. J. Comb. Theory, Ser. B 88(1), 119–134 (2003)

    Article  MATH  Google Scholar 

  29. Reed, B.A., Li, Z.: Optimization and recognition for K 5-minor free graphs in linear time. In: Proc. of the 8th Latin American Symposium on Theoretical Informatics (LATIN), pp. 206–215 (2008)

    Google Scholar 

  30. Robertson, N., Seymour, P.: Graph minors. XIII. The disjoint paths problem. J. Comb. Theory, Ser. B 63(1), 65–110 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  31. Robertson, N., Seymour, P., Thomas, R.: Quickly excluding a planar graph. J. Comb. Theory, Ser. B 62(2), 323–348 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  32. Robertson, N., Seymour, P.D.: Graph minors. XX. Wagner’s conjecture. J. Comb. Theory, Ser. B 92(2), 325–357 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  33. Rué, J., Sau, I., Thilikos, D.M.: Dynamic programming for graphs on surfaces. In: Proc. of the 37th International Colloquium on Automata, Languages and Programming (ICALP). LNCS, vol. 6198, pp. 372–383 (2010)

    Chapter  Google Scholar 

  34. Sanders, D.P.: On Hamilton cycles in certain planar graphs. J. Graph Theory 21(1), 43–50 (1998)

    Article  Google Scholar 

  35. Schrijver, A.: Complexity of disjoint paths problems in planar graphs. In: Algorithms—ESA ’93, Proc. of the First Annual European Symposium. LNCS, vol. 726, pp. 357–359 (1993)

    Google Scholar 

  36. Seymour, P.D., Thomas, R.: Call routing and the ratcatcher. Combinatorica 14(2), 217–241 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  37. Tutte, W.T.: A census of planar triangulations. Can. J. Math. 14, 21–38 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  38. Whitney, H.: A theorem on graphs. Ann. Math. 32, 378–390 (1931)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederic Dorn.

Additional information

An extended abstract of this work appeared in the proceedings of ESA’10 [2].

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adler, I., Dorn, F., Fomin, F.V. et al. Fast Minor Testing in Planar Graphs. Algorithmica 64, 69–84 (2012). https://doi.org/10.1007/s00453-011-9563-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-011-9563-9

Keywords

Navigation