An O(n+m) Certifying Triconnnectivity Algorithm for Hamiltonian Graphs | Algorithmica Skip to main content
Log in

An O(n+m) Certifying Triconnnectivity Algorithm for Hamiltonian Graphs

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

A graph is triconnected if it is connected, has at least 4 vertices and the removal of any two vertices does not disconnect the graph. We give a certifying algorithm deciding triconnectivity of Hamiltonian graphs with linear running time (this assumes that the cycle is given as part of the input). If the input graph is triconnected, the algorithm constructs an easily checkable proof for this fact. If the input graph is not triconnected, the algorithm returns a separation pair.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alstrup, S., Brodal, G., Rauhe, T.: New data structures for orthogonal range searching. In: FOCS, pp. 198–207 (2000)

    Google Scholar 

  2. Ando, K., Enomoto, H., Saito, A.: Contractible edges in 3-connected graphs. J. Comb. Theory, Ser. B 42, 87–93 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  3. Brandes, U.: Eager st-ordering. In: ESA, pp. 247–256 (2002)

    Google Scholar 

  4. de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational Geometry: Algorithms and Applications. Springer, Berlin (1997)

    MATH  Google Scholar 

  5. Elmasry, A., Mehlhorn, K., Schmidt, J.M.: Every DFS-tree of a 3-connected graph contains a contractible edge. Available at the second author’s web-page, February 2010

  6. Even, S.: An algorithm for determining whether the connectivity of a graph is at least k. SIAM J. Comput. 4(3), 393–396 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  7. Galil, Z.: Finding the vertex connectivity of graphs. SIAM J. Comput. 9(1), 197–199 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  8. Gabow, H., Bentley, J., Tarjan, R.: Scaling and related techniques for geometry problems. In: STOC, pp. 135–143 (1984)

    Google Scholar 

  9. Gutwenger, C., Mutzel, P.: A linear time implementation of SPQR-trees. In: Graph Drawing. LNCS, vol. 1984, pp. 77–90 (2000)

    Chapter  Google Scholar 

  10. Gabow, H.N., Tarjan, R.E.: A linear-time algorithm for a special case of disjoint set union. J. Comput. Syst. Sci. 30(2), 209–221 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  11. Hopcroft, J., Tarjan, R.E.: Efficient planarity testing. J. ACM 21(4), 549–568 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  12. Imai, T., Asano, T.: Dynamic segment intersection with applications. J. ACM 8, 1–18 (1987)

    MATH  MathSciNet  Google Scholar 

  13. Kriesell, M.: A survey on contractible edges in graphs of a prescribed vertex connectivity. Graphs Comb. 18(1), 1–30 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  14. Linial, N., Lovász, L., Wigderson, A.: Rubber bands, convex embeddings, and graph connectivity. Combinatorica 8(1), 91–102 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  15. Mehlhorn, K.: Data Structures and Efficient Algorithms, vol. 3: Multi-dimensional Searching and Computational Geometry. Springer, Berlin (1984)

    Google Scholar 

  16. McConnell, R., Mehlhorn, K., Näher, S., Schweitzer, P.: Certifying algorithms. Comput. Sci. Rev. (2010). doi:10.1016/j.cosrev.2010.09.009

    Google Scholar 

  17. Miller, G.L., Ramachandran, V.: A new graph triconnectivity algorithm and its parallelization. Combinatorica 12(1), 53–76 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  18. Nagamochi, H., Ibaraki, T.: A linear-time algorithm for finding a sparse k-connected spanning subgraph of a k-connected graph. Algorithmica 7, 583–596 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  19. Schmidt, J.M.: Construction sequences and certifying 3-connectedness. In: 27th International Symposium on Theoretical Aspects of Computer Science (STACS’10), Nancy, France (2010). http://drops.dagstuhl.de/portals/extern/index.php?conf=STACS10

    Google Scholar 

  20. Thomassen, C.: Nonseparating cycles in k-connected graphs. J. Graph. Theory 5, 351–354 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  21. Tutte, W.: A theory of 3-connected graphs. Indag. Math. 23, 441–455 (1961)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kurt Mehlhorn.

Additional information

A. Elmasry is supported by an Alexander von Humboldt Fellowship.

J.M. Schmidt’s research was supported by the Deutsche Forschungsgemeinschaft within the research training group “Methods for Discrete Structures” (GRK 1408).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elmasry, A., Mehlhorn, K. & Schmidt, J.M. An O(n+m) Certifying Triconnnectivity Algorithm for Hamiltonian Graphs. Algorithmica 62, 754–766 (2012). https://doi.org/10.1007/s00453-010-9481-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-010-9481-2

Keywords

Navigation