Abstract
In this paper we present branching algorithms for infinite classes of problems.
The novelty in the design and analysis of our branching algorithms lies in the fact that the weights are redistributed over the graph by the algorithms. Our particular setting to make this idea work is a combination of a branching approach with a recharging mechanism. We call it Branch & Recharge. To demonstrate this approach we consider a generalized domination problem.
Let σ and ϱ be two nonempty sets of nonnegative integers. A vertex subset S⊆V of an undirected graph G=(V(G),E(G)) is called a (σ,ϱ)-dominating set of G if |N(v)∩S|∈σ for all v∈S and |N(v)∩S|∈ϱ for all v∈V∖S. This notion generalizes many domination-type graph invariants.
We present Branch & Recharge algorithms enumerating all (σ,ϱ)-dominating sets of an input graph G in time O *(c n) for some c<2, if σ is successor-free, i.e., it does not contain two consecutive integers, and either both σ and ϱ are finite, or one of them is finite and σ∩ϱ=∅. Our algorithm implies a non trivial upper bound of O *(c n) on the number of (σ,ϱ)-dominating sets in an n-vertex graph under the above conditions on σ and ϱ.
Similar content being viewed by others
References
Beigel, R., Eppstein, D.: 3-coloring in time O(1.3289n). J. Algorithms 54, 168–204 (2005)
Björklund, A., Husfeldt, T.: Inclusion-exclusion algorithms for counting set partitions. In: Proceedings of FOCS 2006, pp. 575–582. IEEE Press, New York (2006)
Byskov, J.M.: Enumerating maximal independent sets with applications to graph colouring. Oper. Res. Lett. 32, 547–556 (2004)
Byskov, J.M., Madsen, B.A., Skjernaa, B.: On the number of maximal bipartite subgraphs of a graph. J. Graph Theory 48, 127–132 (2005)
Eppstein, D.: Small maximal independent sets and faster exact graph coloring. J. Graph Algorithm Appl. 7, 131–140 (2003)
Fomin, F.V., Grandoni, F., Kratsch, D.: Measure and conquer: domination—a case study. In: Proceedings of ICALP 2005. LNCS, vol. 3380, pp. 192–203. Springer, Berlin (2005)
Fomin, F.V., Golovach, P., Kratsch, D., Kratochvil, J., Liedloff, M.: Branch and recharge: exact algorithms for generalized domination. In: Proceedings of WADS 2007. LNCS, vol. 4619, pp. 508–519. Springer, Berlin (2007)
Fomin, F.V., Gaspers, S., Pyatkin, A.V., Razgon, I.: On the minimum feedback vertex set problem: exact and enumeration algorithms. Algorithmica 52, 293–307 (2008)
Fomin, F.V., Grandoni, F., Pyatkin, A.V., Stepanov, A.A.: Combinatorial bounds via measure and conquer: bounding minimal dominating sets and applications. ACM Trans. Algorithms 5(1), 9 (2008)
Fomin, F.V., Golovach, P.A., Kratochvil, J., Kratsch, D., Liedloff, M.: Sort and search: exact algorithms for generalized domination. Inf. Process. Lett. 109, 795–798 (2009)
Fomin, F.V., Grandoni, F., Kratsch, D.: A measure & conquer approach for the analysis of exact algorithms. J. ACM 56(5), 25 (2009)
Fomin, F.V., Grandoni, F., Kratsch, D.: Measure and conquer: A simple O(20.288n) independent set algorithm. In: Proceedings of SODA 2006, pp. 18–25. SIAM, Philadelphia (2006)
Golovach, P., Kratochvíl, J.: Computational complexity of generalized domination: a complete dichotomy for chordal graphs. In: Proceedings of WG 2007. LNCS, vol. 4769, pp. 1–11. Springer, Berlin (2007)
Golovach, P., Kratochvíl, J.: Generalized domination in degenerate graphs: a complete dichotomy of computational complexity. In: Proceedings of TAMC 2008. LNCS, vol. 4978, pp. 182–191. Springer, Berlin (2008)
Golovach, P., Kratochvíl, J., Suchý, O.: Parameterized complexity of generalized domination problems. In: Proceedings of WG 2009. LNCS, vol. 5911, pp. 133–142. Springer, Berlin (2009)
Gupta, S., Raman, V., Saurabh, S.: Fast exponential algorithms for Maximum r-regular induced subgraph problems. In: Proceedings of FSTTCS 2006. LNCS, vol. 4337, pp. 139–151. Springer, Berlin (2006)
Halldorsson, M.M., Kratochvíl, J., Telle, J.A.: Independent sets with domination constraints. Discrete Appl. Math. 99, 39–54 (2000)
Haynes, T.W., Hedetniemi, S.T., Slater, P.J.: Fundamentals of Domination in Graphs. Dekker, New York (1998)
Heggernes, P., Telle, J.A.: Partitioning graphs into generalized dominating sets. Nord. J. Comput. 5, 128–142 (1998)
Kullmann, O.: New methods for 3-SAT decision and worst-case analysis. Theor. Comput. Sci. 223, 1–72 (1999)
Lawler, E.L.: A note on the complexity of the chromatic number problem. Inf. Process. Lett. 5, 66–67 (1976)
Moon, J.W., Moser, L.: On cliques in graphs. Isr. J. Math. 5, 23–28 (1965)
Rosen, K.H.: Discrete Mathematics and Its Applications. McGraw-Hill, New York (2007)
Telle, J.A.: Complexity of domination-type problems in graphs. Nord. J. Comput. 1, 157–171 (1994)
Woeginger, G.J.: Exact algorithms for NP-hard problems: A survey. In: Combinatorial Optimization—Eureka, You Shrink! LNCS, vol. 2570, pp. 185–207. Springer, Berlin (2003)
Author information
Authors and Affiliations
Corresponding author
Additional information
A preliminary version of the paper appeared in the proceedings of WADS 2007 [7].
Research of J. Kratochvíl was supported by Czech research projects MSM0021620838 and 1M0545.
Rights and permissions
About this article
Cite this article
Fomin, F.V., Golovach, P.A., Kratochvíl, J. et al. Branch and Recharge: Exact Algorithms for Generalized Domination. Algorithmica 61, 252–273 (2011). https://doi.org/10.1007/s00453-010-9418-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00453-010-9418-9