Branch and Recharge: Exact Algorithms for Generalized Domination | Algorithmica Skip to main content
Log in

Branch and Recharge: Exact Algorithms for Generalized Domination

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

In this paper we present branching algorithms for infinite classes of problems.

The novelty in the design and analysis of our branching algorithms lies in the fact that the weights are redistributed over the graph by the algorithms. Our particular setting to make this idea work is a combination of a branching approach with a recharging mechanism. We call it Branch & Recharge. To demonstrate this approach we consider a generalized domination problem.

Let σ and ϱ be two nonempty sets of nonnegative integers. A vertex subset SV of an undirected graph G=(V(G),E(G)) is called a (σ,ϱ)-dominating set of G if |N(v)∩S|∈σ for all vS and |N(v)∩S|∈ϱ for all vVS. This notion generalizes many domination-type graph invariants.

We present Branch & Recharge algorithms enumerating all (σ,ϱ)-dominating sets of an input graph G in time O *(c n) for some c<2, if σ is successor-free, i.e., it does not contain two consecutive integers, and either both σ and ϱ are finite, or one of them is finite and σϱ=. Our algorithm implies a non trivial upper bound of O *(c n) on the number of (σ,ϱ)-dominating sets in an n-vertex graph under the above conditions on σ and ϱ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beigel, R., Eppstein, D.: 3-coloring in time O(1.3289n). J. Algorithms 54, 168–204 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Björklund, A., Husfeldt, T.: Inclusion-exclusion algorithms for counting set partitions. In: Proceedings of FOCS 2006, pp. 575–582. IEEE Press, New York (2006)

    Google Scholar 

  3. Byskov, J.M.: Enumerating maximal independent sets with applications to graph colouring. Oper. Res. Lett. 32, 547–556 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Byskov, J.M., Madsen, B.A., Skjernaa, B.: On the number of maximal bipartite subgraphs of a graph. J. Graph Theory 48, 127–132 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Eppstein, D.: Small maximal independent sets and faster exact graph coloring. J. Graph Algorithm Appl. 7, 131–140 (2003)

    MathSciNet  MATH  Google Scholar 

  6. Fomin, F.V., Grandoni, F., Kratsch, D.: Measure and conquer: domination—a case study. In: Proceedings of ICALP 2005. LNCS, vol. 3380, pp. 192–203. Springer, Berlin (2005)

    Google Scholar 

  7. Fomin, F.V., Golovach, P., Kratsch, D., Kratochvil, J., Liedloff, M.: Branch and recharge: exact algorithms for generalized domination. In: Proceedings of WADS 2007. LNCS, vol. 4619, pp. 508–519. Springer, Berlin (2007)

    Google Scholar 

  8. Fomin, F.V., Gaspers, S., Pyatkin, A.V., Razgon, I.: On the minimum feedback vertex set problem: exact and enumeration algorithms. Algorithmica 52, 293–307 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fomin, F.V., Grandoni, F., Pyatkin, A.V., Stepanov, A.A.: Combinatorial bounds via measure and conquer: bounding minimal dominating sets and applications. ACM Trans. Algorithms 5(1), 9 (2008)

    Article  MathSciNet  Google Scholar 

  10. Fomin, F.V., Golovach, P.A., Kratochvil, J., Kratsch, D., Liedloff, M.: Sort and search: exact algorithms for generalized domination. Inf. Process. Lett. 109, 795–798 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fomin, F.V., Grandoni, F., Kratsch, D.: A measure & conquer approach for the analysis of exact algorithms. J. ACM 56(5), 25 (2009)

    Article  MathSciNet  Google Scholar 

  12. Fomin, F.V., Grandoni, F., Kratsch, D.: Measure and conquer: A simple O(20.288n) independent set algorithm. In: Proceedings of SODA 2006, pp. 18–25. SIAM, Philadelphia (2006)

    Chapter  Google Scholar 

  13. Golovach, P., Kratochvíl, J.: Computational complexity of generalized domination: a complete dichotomy for chordal graphs. In: Proceedings of WG 2007. LNCS, vol. 4769, pp. 1–11. Springer, Berlin (2007)

    Google Scholar 

  14. Golovach, P., Kratochvíl, J.: Generalized domination in degenerate graphs: a complete dichotomy of computational complexity. In: Proceedings of TAMC 2008. LNCS, vol. 4978, pp. 182–191. Springer, Berlin (2008)

    Google Scholar 

  15. Golovach, P., Kratochvíl, J., Suchý, O.: Parameterized complexity of generalized domination problems. In: Proceedings of WG 2009. LNCS, vol. 5911, pp. 133–142. Springer, Berlin (2009)

    Google Scholar 

  16. Gupta, S., Raman, V., Saurabh, S.: Fast exponential algorithms for Maximum r-regular induced subgraph problems. In: Proceedings of FSTTCS 2006. LNCS, vol. 4337, pp. 139–151. Springer, Berlin (2006)

    Google Scholar 

  17. Halldorsson, M.M., Kratochvíl, J., Telle, J.A.: Independent sets with domination constraints. Discrete Appl. Math. 99, 39–54 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  18. Haynes, T.W., Hedetniemi, S.T., Slater, P.J.: Fundamentals of Domination in Graphs. Dekker, New York (1998)

    MATH  Google Scholar 

  19. Heggernes, P., Telle, J.A.: Partitioning graphs into generalized dominating sets. Nord. J. Comput. 5, 128–142 (1998)

    MathSciNet  MATH  Google Scholar 

  20. Kullmann, O.: New methods for 3-SAT decision and worst-case analysis. Theor. Comput. Sci. 223, 1–72 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lawler, E.L.: A note on the complexity of the chromatic number problem. Inf. Process. Lett. 5, 66–67 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  22. Moon, J.W., Moser, L.: On cliques in graphs. Isr. J. Math. 5, 23–28 (1965)

    Article  MathSciNet  Google Scholar 

  23. Rosen, K.H.: Discrete Mathematics and Its Applications. McGraw-Hill, New York (2007)

    Google Scholar 

  24. Telle, J.A.: Complexity of domination-type problems in graphs. Nord. J. Comput. 1, 157–171 (1994)

    MathSciNet  Google Scholar 

  25. Woeginger, G.J.: Exact algorithms for NP-hard problems: A survey. In: Combinatorial Optimization—Eureka, You Shrink! LNCS, vol. 2570, pp. 185–207. Springer, Berlin (2003)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dieter Kratsch.

Additional information

A preliminary version of the paper appeared in the proceedings of WADS 2007 [7].

Research of J. Kratochvíl was supported by Czech research projects MSM0021620838 and 1M0545.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fomin, F.V., Golovach, P.A., Kratochvíl, J. et al. Branch and Recharge: Exact Algorithms for Generalized Domination. Algorithmica 61, 252–273 (2011). https://doi.org/10.1007/s00453-010-9418-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-010-9418-9

Keywords

Navigation