The Stackelberg Minimum Spanning Tree Game | Algorithmica
Skip to main content

The Stackelberg Minimum Spanning Tree Game

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

We consider a one-round two-player network pricing game, the Stackelberg Minimum Spanning Tree game or StackMST.

The game is played on a graph (representing a network), whose edges are colored either red or blue, and where the red edges have a given fixed cost (representing the competitor’s prices). The first player chooses an assignment of prices to the blue edges, and the second player then buys the cheapest possible minimum spanning tree, using any combination of red and blue edges. The goal of the first player is to maximize the total price of purchased blue edges. This game is the minimum spanning tree analog of the well-studied Stackelberg shortest-path game.

We analyze the complexity and approximability of the first player’s best strategy in StackMST. In particular, we prove that the problem is APX-hard even if there are only two different red costs, and give an approximation algorithm whose approximation ratio is at most min {k,1+ln b,1+ln W}, where k is the number of distinct red costs, b is the number of blue edges, and W is the maximum ratio between red costs. We also give a natural integer linear programming formulation of the problem, and show that the integrality gap of the fractional relaxation asymptotically matches the approximation guarantee of our algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alimonti, P., Kann, V.: Some APX-completeness results for cubic graphs. Theor. Comput. Sci. 237(1–2), 123–134 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Balcan, M.-F., Blum, A.: Approximation algorithms and online mechanisms for item pricing. In: Proc. ACM Conference on Electronic Commerce (EC) (2006)

  3. Balcan, M.-F., Blum, A., Manshour, Y.: Item pricing for revenue maximization. In: Proc. ACM Conference on Electronic Commerce (EC) (2008)

  4. Bouhtou, M., Grigoriev, A., van Hoesel, S., van der Kraaij, A.F., Spieksma, F.C.R., Uetz, M.: Pricing bridges to cross a river. Nav. Res. Logist. 54(4), 411–420 (2007)

    Article  MATH  Google Scholar 

  5. Briest, P., Hoefer, M., Krysta, P.: Stackelberg network pricing games. In: Proc. 25th International Symposium on Theoretical Aspects of Computer Science (STACS), pp. 133–142 (2008)

  6. Briest, P., Krysta, P.: Single-minded unlimited supply pricing on sparse instances. In: Proc. 17th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1093–1102 (2006)

  7. Cardinal, J., Demaine, E.D., Fiorini, S., Joret, G., Langerman, S., Newman, I., Weimann, O.: The Stackelberg minimum spanning tree game. In: Proc. 10th International Workshop on Algorithms and Data Structures (WADS). Lecture Notes in Computer Science, vol. 4619, pp. 64–76. Springer, Berlin (2007)

    Chapter  Google Scholar 

  8. Cardinal, J., Labbé, M., Langerman, S., Palop, B.: Pricing of geometric transportation networks. In: Proc. Canadian Conference on Computational Geometry (CCCG), pp. 92–96 (2005)

  9. Demaine, E.D., Feige, U., Hajiaghayi, M., Salavatipour, M.R.: Combination can be hard: Approximability of the unique coverage problem. SIAM J. Comput. (2009, to appear)

  10. Grigoriev, A., van Loon, J., Sitters, R., Uetz, M.: How to sell a graph: Guidelines for graph retailers. In: Proc. Workshop on Graph-Theoretic Concepts in Computer Science (WG). Lecture Notes in Computer Science, vol. 4271, pp. 125–136. Springer, Berlin (2006)

    Chapter  Google Scholar 

  11. Guruswami, V., Hartline, J., Karlin, A., Kempe, D., Kenyon, C., McSherry, F.: On profit-maximizing envy-free pricing. In: Proc. 16th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1164–1173 (2005)

  12. Hartline, J.D., Koltun, V.: Near-optimal pricing in near-linear time. In: Proc. Workshop on Algorithms and Data Structures (WADS). Lecture Notes in Computer Science, vol. 3608, pp. 422–431. Springer, Berlin (2005)

    Chapter  Google Scholar 

  13. Labbé, M., Marcotte, P., Savard, G.: A bilevel model of taxation and its application to optimal highway pricing. Manag. Sci. 44(12), 1608–1622 (1998)

    Article  MATH  Google Scholar 

  14. Papadimitriou, C.H., Yannakakis, M.: Optimization, approximation, and complexity classes. J. Comput. Syst. Sci. 43(3), 425–440 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  15. Roch, S., Savard, G., Marcotte, P.: An approximation algorithm for Stackelberg network pricing. Networks 46(1), 57–67 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Schrijver, A.: Matroids, trees, stable sets. In: Combinatorial Optimization. Polyhedra and Efficiency, vol. B. Algorithms and Combinatorics, vol. 24. Springer, Berlin (2003). Chaps. 39–69

    Google Scholar 

  17. van Hoesel, S.: An overview of Stackelberg pricing in networks. Research Memoranda 042, Maastricht: METEOR, Maastricht Research School of Economics of Technology and Organization (2006)

  18. von Stackelberg, H.: Marktform und Gleichgewicht (Market and Equilibrium). Springer, Vienna (1934)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Cardinal.

Additional information

A preliminary version of this article appeared in the Proceedings of the 10th Workshop on Algorithms and Data Structures (WADS 2007), see [7]. This work was partially supported by the Actions de Recherche Concertées (ARC) fund of the Communauté française de Belgique.

G. Joret is a Postdoctoral Researcher of the Fonds National de la Recherche Scientifique (F.R.S.–FNRS).

S. Langerman is a Research Associate of the Fonds National de la Recherche Scientifique (F.R.S.–FNRS).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cardinal, J., Demaine, E.D., Fiorini, S. et al. The Stackelberg Minimum Spanning Tree Game. Algorithmica 59, 129–144 (2011). https://doi.org/10.1007/s00453-009-9299-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-009-9299-y

Keywords