On Dynamic Bin Packing: An Improved Lower Bound and Resource Augmentation Analysis | Algorithmica Skip to main content
Log in

On Dynamic Bin Packing: An Improved Lower Bound and Resource Augmentation Analysis

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

We study the dynamic bin packing problem introduced by Coffman, Garey and Johnson. This problem is a generalization of the bin packing problem in which items may arrive and depart from the packing dynamically. The main result in this paper is a lower bound of 2.5 on the achievable competitive ratio, improving the best known 2.428 lower bound, and revealing that packing items of restricted form like unit fractions (i.e., of size 1/k for some integer k), for which a 2.4985-competitive algorithm is known, is indeed easier.

We also investigate the resource augmentation version of the problem where the on-line algorithm can use bins of size b (>1) times that of the optimal off-line algorithm. An interesting result is that we prove b=2 is both necessary and sufficient for the on-line algorithm to match the performance of the optimal off-line algorithm, i.e., achieve 1-competitiveness. Further analysis gives a trade-off between the bin size multiplier 1<b≤2 and the achievable competitive ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bar-Noy, A., Ladner, R.E., Tamir, T.: Windows scheduling as a restricted version of bin packing. ACM Trans. Algorithms 3(3), 224–233 (2007)

    Article  MathSciNet  Google Scholar 

  2. Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  3. Chan, W.T., Lam, T.W., Wong, P.W.H.: Dynamic bin packing of unit fractions items. In: Proceedings of the 32nd International Colloquium on Automata, Languages and Programming (ICALP). Lecture Notes in Computer Science, vol. 3580, pp. 614–626. Springer, Berlin (2005)

    Google Scholar 

  4. Coffman, E.G. Jr., Courcoubetis, C., Garey, M.R., Johnson, D.S., Shor, P.W., Weber, R.R., Yannakakis, M.: Bin packing with discrete item sizes. Part I: Perfect packing theorems and the average case behavior of optimal packings. SIAM J. Discrete Math. 13, 38–402 (2000)

    Article  MathSciNet  Google Scholar 

  5. Coffman, E.G. Jr., Galambos, G., Martello, S., Vigo, D.: Bin packing approximation algorithms: Combinatorial analysis. In: Du, D.-Z., Pardalos, P.M. (eds.) Handbook of Combinatorial Optimization. Kluwer Academic, Dordrecht (1998)

    Google Scholar 

  6. Coffman, E.G. Jr., Garey, M., Johnson, D.: Bin packing with divisible item sizes. J. Complex. 3, 405–428 (1987)

    MathSciNet  Google Scholar 

  7. Coffman, E.G. Jr., Garey, M.R., Johnson, D.S.: Dynamic bin packing. SIAM J. Comput. 12(2), 227–258 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  8. Coffman, E.G. Jr., Garey, M.R., Johnson, D.S.: Approximation algorithms for bin packing: A survey. In: Hochbaum, D.S. (ed.) Approximation Algorithms for NP-Hard Problems, pp. 46–93. PWS, Boston (1996)

    Google Scholar 

  9. Coffman, E.G. Jr., Johnson, D.S., McGeoch, L.A., Shor, P.W., Weber, R.R.: Bin packing with discrete item sizes. Part III: Average case behavior of FFD and BFD (2008, in preparation)

  10. Coffman, E.G. Jr., Johnson, D.S., Shor, P.W., Weber, R.R.: Bin packing with discrete item sizes. Part II: Tight bounds on first fit. Random Struct. Algorithms 10, 69–101 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  11. Csirik, J., Woeginger, G.J.: On-line packing and covering problems. In: Fiat, A., Woeginger, G.J. (eds.) On-line Algorithms—The State of the Art. Lecture Notes in Computer Science, vol. 1442, pp. 147–177. Springer, Berlin (1996)

    Google Scholar 

  12. Csirik, J., Woeginger, G.J.: Resource augmentation for online bounded space bin packing. J. Algorithms 44(2), 308–320 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  13. Epstein, L., van Stee, R.: Online bin packing with resource augmentation. In: Persiano, G., Solis-Oba, R. (eds.) Proceedings of the Second International Workshop on Approximation and Online Algorithms (WAOA). Lecture Notes in Computer Science, vol. 3351, pp. 23–35. Springer, Berlin (2004)

    Google Scholar 

  14. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, New York (1979)

    MATH  Google Scholar 

  15. Ivkovic, Z., Lloyd, E.L.: Fully dynamic algorithms for bin packing: Being (mostly) myopic helps. SIAM J. Comput. 28(2), 574–611 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  16. Kalyanasundaram, B., Pruhs, K.: Speed is as powerful as clairvoyance. J. ACM 47(4), 617–643 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  17. Seiden, S.S.: On the online bin packing problem. J. ACM 49(5), 640–671 (2002)

    Article  MathSciNet  Google Scholar 

  18. van Vliet, A.: An improved lower bound for on-line bin packing algorithms. Inf. Process. Lett. 43(5), 277–284 (1992)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prudence W. H. Wong.

Additional information

Communicated by Danny Chen and D.T. Lee.

J.W.-T. Chan’s research is partly supported by Hong Kong RGC Grant HKU5172/03E when the author was with the Department of Computer Science, University of Hong Kong, Hong Kong.

P.W.H. Wong’s research is partly supported by Nuffield Foundation Grant NAL/01004/G.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chan, J.WT., Wong, P.W.H. & Yung, F.C.C. On Dynamic Bin Packing: An Improved Lower Bound and Resource Augmentation Analysis. Algorithmica 53, 172–206 (2009). https://doi.org/10.1007/s00453-008-9185-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-008-9185-z

Keywords

Navigation