Pattern research in the digital humanities: how data mining techniques support the identification of costume patterns | SICS Software-Intensive Cyber-Physical Systems Skip to main content
Log in

Pattern research in the digital humanities: how data mining techniques support the identification of costume patterns

  • Special Issue Paper
  • Published:
Computer Science - Research and Development

Abstract

Costumes are prominent in transporting a character’s mood, a certain stereotype, or character trait in a film. The concept of patterns, applied to the domain of costumes in films, can help costume designers to improve their work by capturing knowledge and experience about proven solutions for recurring design problems. However, finding such Costume Patterns is a difficult and time-consuming task, because possibly hundreds of different costumes of a huge number of films have to be analyzed to find commonalities. In this paper, we present a Semi-Automated Costume Pattern Mining Method to discover indicators for Costume Patterns from a large data set of documented costumes using data mining and data warehouse techniques. We validate the presented approach by a prototypical implementation that builds upon the Apriori algorithm for mining association rules and standard data warehouse technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. As part of the MUSE project (last accessed on 25.02.2016): http://www.iaas.uni-stuttgart.de/forschung/projects/MUSE.

  2. As the term pattern is ambigious and used besides the costume domain also in the domain of data mining (cf. [8]) we clarify the different meanings at this point. While data mining is utilized to find patterns in large data sets in the form of similarities, relations, and rules, costume patterns follow the principles of the pattern approach by Alexander et al. [2].

References

  1. Agrawal R, Srikant R (1994) Fast algorithms for mining association rules in large databases. In: Proceedings of the 20th International Conference on Very Large Data Bases, Morgan Kaufmann Publishers Inc., San Francisco, USA, VLDB ’94, pp 487–499

  2. Alexander C, Ishikawa S, Silverstein M (1977) A pattern language: towns, buildings, construction. Oxford University Press, New York

    Google Scholar 

  3. Appleton B (1997) Patterns and software: essential concepts and terminology. Object Mag Online 3(5)

  4. Barzen J (2013) Taxonomien kostümrelevanter Parameter: Annäherung an eine Ontologisierung der Domäne des Filmkostüms. Technical Report 2013/04, University of Stuttgart, Faculty of Computer Science, Electrical Engineering and Information Technology, Germany

  5. Barzen J, Leymann F (2015) Costume languages as pattern languages. In: Baumgartner P, Sickinger R (eds) Proceedings of PURPLSOC (Pursuit of Pattern Languages for Societal Change). The Workshop 2014. epubli GmbH, pp 88–117

  6. Barzen J, Leymann F (2016) Patterns as formulas: applying the scientific method to the humanities. Technical Report 2016/01, University of Stuttgart, Faculty of Computer Science, Electrical Engineering and Information Technology, Germany, University of Stuttgart, Institute of Architectur of Application Systems

  7. Barzen J, Falkenthal M, Hentschel F, Leymann F (2015) Musterforschung in den Geisteswissenschaften: Werkzeugumgebung zur Musterextraktion aus Filmkostümen. In: Extended Abstract Digital Humanities im deutschsprachigen Raum (DHd 2015), DHd 2015, Graz

  8. Bishop C (2006) Pattern recognition and machine learning. Springer, New York

    MATH  Google Scholar 

  9. Codd EF, Codd SB, Salley CT (1993) Providing OLAP (on-line analytical processing) to user-analysts: an IT mandate. E. F. Codd and Associates

  10. Coplien J (1996) Software patterns. SIGS

  11. Dearden A, Finlay J (2006) Pattern languages in HCI: a critical review. Hum Comp Interact 21(1):49–102

    Article  Google Scholar 

  12. Falkenthal M, Barzen J, Breitenbücher U, Fehling C, Leymann F (2014a) Efficient pattern application: validating the concept of solution implementations in different domains. Int J Adv Softw 7(3&4):710–726

  13. Falkenthal M, Barzen J, Breitenbücher U, Fehling C, Leymann F (2014b) From pattern languages to solution implementations. In: Proceedings of the 6th International Conferences on Pervasive Patterns and Applications (PATTERNS), pp 12–21

  14. Falkenthal M, Barzen J, Dörner S, Elkind V, Fauser J, Leymann F, Strehl T (2015) Datenanalyse in den Digital Humanities—Eine Annäherung an Kostümmuster mittels OLAP Cubes. In: Datenbanksysteme für Business, Technologie und Web (BTW), 16. Fachtagung des GI-Fachbereichs “Datenbanken und Informationssysteme” (DBIS), Lecture Notes in Informatics

  15. Fayyad U, Piatetsky-Shapiro G, Smyth P (1996) The KDD process for extracting useful knowledge from volumes of data. Commun ACM 39(11):27–34

    Article  Google Scholar 

  16. Fehling C, Barzen J, Breitenbücher U, Leymann F (2014) A process for pattern identification, authoring, and application. In: Proceedings of the 19th European Conference on Pattern Languages of Programs—EuroPLoP ’14, Association for Computing Machinery (ACM)

  17. Fehling C, Barzen J, Falkenthal M, Leymann F (2015) PatternPedia—Collaborative Pattern Identification and Authoring. In: Proceedings of PURPLSOC (Pursuit of Pattern Languages for Societal Change). The Workshop 2014. epubli GmbH, pp 252–284

  18. Golfarelli M, Maio D, Rizzi S (1998) The dimensional fact model: a conceptual model for data warehouses. Int J Cooper Inf Syst 7:215–247

    Article  Google Scholar 

  19. Hohpe G, Woolf B (2003) Enterprise integration patterns: designing, building, and deploying messaging solutions. Addison-Wesley Longman Publishing Co., Inc

  20. ISO (2006) ISO/IEC 13249-6:2006 Information technology—database languages—SQL multimedia and application packages—Part 6: Data Mining

  21. Reiners R (2013) An evolving pattern library for collaborative project documentation. Phd thesis, RWTH Aachen University

  22. Reiners R, Falkenthal M, Jugel D, Zimmermann A (2015) Requirements for a collaborative formulation process of evolutionary patterns. In: Proceedings of the 18th European Conference on Pattern Languages of Program—EuroPLoP ’13, Association for Computing Machinery (ACM)

  23. Schumm D, Barzen J, Leymann F, Ellrich L (2012) A pattern language for costumes in films. In: Proceedings of the 17\(^{th}\) European Conference on Pattern Languages of Programs—EuroPLoP ’12, Association for Computing Machinery (ACM)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Falkenthal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Falkenthal, M., Barzen, J., Breitenbücher, U. et al. Pattern research in the digital humanities: how data mining techniques support the identification of costume patterns. Comput Sci Res Dev 32, 311–321 (2017). https://doi.org/10.1007/s00450-016-0331-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00450-016-0331-6

Keywords

Navigation