The general entity of life: a cybernetic approach | Biological Cybernetics Skip to main content
Log in

The general entity of life: a cybernetic approach

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

Life, not only in the well-known context of biochemical metabolism but also in the context of hypothetical life synthesized laboratorially or possibly found on other planets, is considered in this paper. The three-component information–energetic–structural irreducible processing in autonomous systems is the core of the proposed approach. The cybernetic organization of a general entity of life—the alivon—is postulated. The crucial properties of life and evolution are derived from the proposed approach. Information encoded in biological structures is also studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. The term information metabolism was introduced by Kȩpiński in order to stress that the processing of information should be taken into consideration as an integrative part of the energetic processing on the biochemical level. Nevertheless, this terminology can be confusing for the biologists because the term metabolism has strict biochemical meaning in biology. Therefore, the term three-component irreducible information–energetic–structural processing is used when the approach proposed in this paper is described.

  2. The below passage can be trivial for the biologists. This passage, however, is indispensable because Kȩpiński wrote his monographs (among others, the ones specified in the bibliography—[5658]) in a hurry, when he was faced with a terminal disease. Therefore, first of all, he worked out the psychiatric aspects of the theory and its applications. Other aspects, including analysis of life as such, were only mentioned in his books. In the passage, the arguments in support of his aforementioned thesis about complexity of biological entities and information processing are put forward.

References

  1. Ashby WR (1948) Design for a brain. Electron Eng 20:379–383

    Google Scholar 

  2. Ashby WR (1957) An introduction to cybernetics. Chapman & Hall LTD, London

    Google Scholar 

  3. Ashby WR (1962) Principles of self-organizing system. In: Von Foerster H, Zopf Jr GW (eds) Principles of self-organization: transactions of the University of Illinois Symposium, Pergamon Press, London, 255–278 also. In: Emergence: Complexity and Organizations 6, 2004, 102–126 (section: Classical Works)

  4. Ayala FJ (2007) Darwin’s gift to science and religion. Joseph Henry Press, Washington

    Google Scholar 

  5. Bedau MA (1998) Four puzzles about life. Artif Life 4:125–140

    CAS  PubMed  Google Scholar 

  6. Bedau MA (2012) A functional account of degrees of minimal chemical life. Synthese 183:73–88

    Google Scholar 

  7. Bernard C (1865) Introduction à l’étude de la médicine expérimentale. Baillière, Paris (English edition: Introduction to the Study of Experimental Medicine, Macmillan, 1927, reprint 1949)

  8. Berry G, Boudol G (1992) The chemical abstract machine. Theor Comput Sci 96:217–248

    Google Scholar 

  9. Bertalanffy L (1968) General systems theory. Braziller, New York

    Google Scholar 

  10. Bielecki A (2007) Information metabolism in the framework of exact sciences. Chapter 7:170–215. in: Kokoszka A (2007) States of Consciousness. Springer, New York

  11. Bielecki A (2014) A model of human activity automatization as a basis of artificial intelligence systems. IEEE Trans Auton Ment Dev 6:169–182

    Google Scholar 

  12. Bielecki A, Buratowski T, Śmigielski P (2013) Recognition of two-dimensional representation of urban environment for autonomous flying agents. Expert Syst Appl 40:3623–3633

    Google Scholar 

  13. Bielecki A, Kalita P (2008) Model of neurotransmitter fast transport in axon terminal of presynaptic neuron. J Math Biol 56:559–576

    PubMed  Google Scholar 

  14. Bielecki A, Kalita P (2012) Stability, controllability and observability properties of the averaged model of fast synaptic transport. J Math Anal Appl 393:329–240

    Google Scholar 

  15. Bielecki A, Kalita P, Lewandowski M, Skomorowski M (2008) Compartment model of neuropeptide synaptic transport with impulse control. Biol Cybern 99:443–458

    PubMed  Google Scholar 

  16. Bielecki A, Kalita P, Lewandowski M, Siwek B (2010) Numerical simulation for neurotransmitter transport model in axon terminal of presynaptic neuron. Biol Cybern 102:489–502

    PubMed  Google Scholar 

  17. Bielecki A, Stocki R (2010) Systems theory approach to the health care organization on the national level. Cybern Syst 41:489–507

    Google Scholar 

  18. Bielecki E, Waśko F (1971) Preliminary morphological and cytological observations in the influence of mercury-containing fungicides on the development of beet seedlings. Acta Biol Crac Ser Bot 14:129–137

    Google Scholar 

  19. Bielecki E (1974) The influence of phenyl acetate on mitosis and chromosome structure in Allium cepa. Acta Biol Crac Ser Bot 17:119–132

    CAS  Google Scholar 

  20. Bielecki E (1977) Further studies in the influence of phenyl mercury acetate on mitosis in Allium cepa. Acta Biol Crac Ser Bot 20:70–79

    Google Scholar 

  21. Brillouin L (1953) The negentropy principle of information. J Appl Physiol 34:1152–1163

    Google Scholar 

  22. Brillouin L (1956) Science and information theory. Academic Press, New York

    Google Scholar 

  23. Cannon WB (1932) Wisdom of the body. Norton, New York

    Google Scholar 

  24. Ciobanu G, Pan L, Pǎun G, Pérez-Jiménez MJ (2007) P systems with minimal parallelism. Theor Comput Sci 378:117–130

    Google Scholar 

  25. Clancy P, Brack A, Horneck G (2005) Looking for life. Searching the solar system. Cambridge University Press, New York

    Google Scholar 

  26. Clarke E (2014) Origins of evolutionary transitions. J Biosci 39:1–14

    Google Scholar 

  27. Cleland CE (2012) Life without definitions. Synthese 185:125–144

    Google Scholar 

  28. Cornish-Bowden A, Cárdenas ML (2008) Self-organization at the origin of life. J Theor Biol 252:411–418

    PubMed  Google Scholar 

  29. Darwin C (1845) Journal of Researches into the Natural History and Geology of the Countries Visited During the Voyage of H.M.S. Beagle Round the World, under the Command of Capt. Fitz Roy, Murray, London

  30. Darwin C (1859) The origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. Murray, London

    Google Scholar 

  31. Darwin C (1871) Letter to Hocker (1st February 1871 - letter number 7471 in Darwin Correspondence Project database)

  32. Darwin C (1871) The descent of man and selection in relation to sex, vol 1. Murray, London

    Google Scholar 

  33. Dawkins R (1996) Climbing mount improbable. Norton, New York

    Google Scholar 

  34. Dobzhansky T, Spassky B (1969) Artificial and natural selection for two behavioral traits in Drosophila pseudoobscura. Proc Natl Sci Acad USA 62:75–80

    CAS  Google Scholar 

  35. Dose K (1988) The origin of life: more questions than answers. Interdiscip Sci Rev 13:348–356

    Google Scholar 

  36. Dunker AK, Kriwacki RW (2011) The orderly chaos of proteins. Sci Am 304(5):68–73

    CAS  PubMed  Google Scholar 

  37. Ereshefsky M, Pedroso M (2013) Biological individuality: the case of biofilms. Biol Philos 28:331–349

    Google Scholar 

  38. Fernandes TCC, Mazzeo DEC, Marin-Morales MA (2007) Mechanism of micronuclei formation in polyploidizated cells of Allium cepa exposed to trifluralin herbicide. Pestic Biochem Physiol 88:252–259

    CAS  Google Scholar 

  39. Fernandes TCC, Mazzeo DEC, Marin-Morales MA (2009) Origin of nuclear and chromosomal alterations derived from the action of an aneugenic agent Trifluralin herbicide. Ecotoxicol Environ Saf 72:1680–1686

    CAS  PubMed  Google Scholar 

  40. Futuyma DJ (2005) Evolution. Sinauer Associates, Sunderland

    Google Scholar 

  41. Ganti T (1975) Organisation of chemical reactions into dividing and metabolizing units: the chemotons. BioSystems 7:189–195

    Google Scholar 

  42. Gibbs WW (2004) A new race of robots. Sci Am 290(3):58–67

    PubMed  Google Scholar 

  43. Gupta AP, Lewontin RC (1982) A study of reaction norms in natural populations of Drosophila pseudoobscura. Evolution 36:934–948

    Google Scholar 

  44. Haldane JBS (1928) The origin of life. Ration Ann 188:3

    Google Scholar 

  45. Hellerman L (2006) Representation of living forms. Biol Philos 21:537–552

    Google Scholar 

  46. Horzyk A, Tadeusiewicz R (2004) Self-optimizing neural networks. Lect Notes Comput Sci 3173:150–155

    Google Scholar 

  47. Horzyk A, Tadeusiewicz R (2005) Comparison of plasticity of self-optimizing neural networks and natural neural networks. Lect Notes Comput Sci 3561:156–165

    Google Scholar 

  48. Jablonka E (2002) Information: its interpretation, its inheritance, and its sharing. Philos Sci 69:578–605

    Google Scholar 

  49. Jablonka E, Lamb MJ (2006) The evolution of information in the major transitions. J Theor Biol 239:236–246

    CAS  PubMed  Google Scholar 

  50. Jablonka E, Lamb MJ (2007) Précis of evolution in four dimensions. Behav Brain Sci 30:353–392

    PubMed  Google Scholar 

  51. Jablonka E, Szathmáry E (1995) The evolution of information storage and heredity. Trends Ecol Evol 10:206–211

    CAS  PubMed  Google Scholar 

  52. Jacobs GH, Nathans J (2009) The evolution of primate color vision. Sci Am 300(4):56–63

    PubMed  Google Scholar 

  53. Jacobs GH, Williams GA, Cahill H, Nathans J (2007) Emergence of novel color vision in mice engineered to express a human cone pigment. Science 315:1723–1725

    CAS  PubMed  Google Scholar 

  54. Kaufmann S (1995) At home in the universe. Oxford University Press, New York

    Google Scholar 

  55. Kȩpiński A (1970) The biological model in psychiatric thinking. Pol Psychiatry 4:373–378 (in Polish)

    Google Scholar 

  56. Kȩpiński A (2001) Melancholy. Wydawnictwo Literackie (first edition: PZWL, Warszawa, 1972) (in Polish)

  57. Kȩpiński A (2001) Schizophrenia. Wydawnictwo Literackie (first edition: PZWL, Warszawa, 1972) (in Polish)

  58. Kȩpiński A (2002) Anxiety. Wydawnictwo Literackie (first edition: PZWL, Warszawa, 1977) (in Polish)

  59. Khakh BS, Burnstock G (2009) The double life of ATP. Sci Am 301(6):84–92

    PubMed Central  CAS  PubMed  Google Scholar 

  60. Kitano H (2002) Systems biology: a brief overview. Science 295:1662–1664

    CAS  PubMed  Google Scholar 

  61. Kohonen T (1981) Automatic formation of topological maps of pattern in a self-organizing system. In: Oja E, Simula O (eds) Proceeding of the second scandinavian conference on image analysis. Suomen Hakmonsunnistustukimuksen, Seura, pp 214–220

  62. Kohonen T (1982) Self-organized formation of topologically correct maps. Biol Cybern 43:59–69

    Google Scholar 

  63. Kokoszka A (1993) Information metabolism as a model of consciousness. Int J Neurosci 68:165–177

    CAS  PubMed  Google Scholar 

  64. Kokoszka A (1999) Information metabolism as a model of human experiences. Int J Neurosci 97:169–178

    CAS  PubMed  Google Scholar 

  65. Kokoszka A (2007) States of consciousness. Springer, New York

    Google Scholar 

  66. Kokoszka A, Bielecki A, Holas P (2001) Mental organisation according to the metabolism of information model and its mathematical description. Int J Neurosci 107:173–184

    CAS  PubMed  Google Scholar 

  67. Korzeniewski B (2001) Cybernetic formulation of the definition of life. J Theor Biol 209:275–286

    CAS  PubMed  Google Scholar 

  68. Korzeniewski B (2005) Confrontation of the cybernetic definition of a living individual with the real world. Acta Biotheor 53:1–28

  69. Korzeniewski B (2011) Artificial cybernetics living individuals based on supramolecular level organization as dispersed individuals. Artif Life 17:51–67

    PubMed  Google Scholar 

  70. LeDoux J (1996) The emotional brain. Simon and Schuster, New York

    Google Scholar 

  71. Lem S (2013) Summa Thechnologiae. University of Minnesota Press, Minnesota, (First edition: Lem S (1964) Summa Technologiae. Wydawnictwo Literackie, Kraków (in Polish))

  72. Letelier JC, Kuboyama T, Yasuda H, Cardenas ML, Cornish-Bowden A (2005) A self-referential equation, f(f)=f, obtained using the theory of (M, R)-systems: overview and applications. In: Anai H, Horimoto K (eds) Algebraic biology. Universal Academy Press, Tokyo, pp 115–126

    Google Scholar 

  73. Libby E, Rainey PB (2013) A conceptual framework for the evolutionary origins of multicellularity. Phys Biol 10(3): article number: 035001

  74. Luisi PL (1998) About various definitions of life. Origins Life Evol Biosph 28:613–622

    CAS  Google Scholar 

  75. Martin W, Russell MJ (2007) On the origin of biochemistry at an alkalione hydrothermal vent. Philos Trans R Soc Lond B 362:1887–1925

    CAS  Google Scholar 

  76. Mazur M (1966) Cybernetic theory of autonomous systems. PWN, Warszawa (in Polish)

    Google Scholar 

  77. Mazur M (1976) Cybernetics and character. PIW, Warszawa (in Polish)

    Google Scholar 

  78. Maynard Smith J, Szathmáry E (1995) The major transitions in evolution. Freeman, Oxford

    Google Scholar 

  79. McCoulloch WS, Pitts WH (1943) A logical calculus of the ideas immanent in nervous activity. Bull Math Biophys 5:115–133

    Google Scholar 

  80. Miller SL (1953) Production of amino acids under possible primitive earth conditions. Science 117:528–529

    CAS  PubMed  Google Scholar 

  81. Morowitz H, Smith E (2007) Energy flow and the organization of life. Complexity 13:51–59

    Google Scholar 

  82. Muller HJ (1927) Artificial transmutation of the gene. Science 66:84–87

    CAS  PubMed  Google Scholar 

  83. Muller HJ (1928) The production of mutations by X-rays. PNAS 14:714–726

    PubMed Central  CAS  PubMed  Google Scholar 

  84. Muller HJ (1930) Types of visible variations induced by X-rays in Drosophila. J Genet 22:299–334

    Google Scholar 

  85. Muller HJ (1935) Life. Science 121:1–9

    Google Scholar 

  86. Muller HJ (1966) The gene material as the initiator and organizing basis of life. Am Nat 100:493–517

    Google Scholar 

  87. Nurse P (2008) Life, logic and information. Nature 454:424–426

    CAS  PubMed  Google Scholar 

  88. Olivier JD, Randall RS (2006) Definitely life but not definitely. Origins Life Evol Biosph 36:515–521

    Google Scholar 

  89. Oparin AI (1924) Proizhodienie Zhizni. Moscowski Rabochi, Moskwa (English edition: The Origin of Life. Dover Phoenix Editions, New York, 1952)

  90. Orò J (1961) Mechanism of synthesis of adenine from hydrogen cyanide under plausible primitive earth conditions. Nature 191:193–1194

    Google Scholar 

  91. Parke EC (2013) What could arsenic bacteria teach us about life? Biol Philos 28:205–218

    Google Scholar 

  92. Pǎun G (2000) Computing with membranes. J Comput Syst Sci 61:108–143

    Google Scholar 

  93. Pǎun G, Pérez-Jiménez MJ (2010) Solving problems in a distributed way in membrane computing: dP systems. Int J Comput Commun Controls 5:238–250

    Google Scholar 

  94. Pǎun G, Rozenberg G, Salomaa A (2000) Membrane computing with external output. Fund Inform 41:313–340

    Google Scholar 

  95. Pǎun G, Rozenberg G (2002) A guide to membrane computing. Theor Comput Sci 287:73–100

    Google Scholar 

  96. Perez Velazquez JL (2005) Brain, behaviour and mathematics: Are we using the right approaches? Phys D 212:161–182

    Google Scholar 

  97. Perez Velazquez JL (2009) Finding simplicity in complexity: general principles of biological and nonbiological organization. J Biol Phys 35:209–221

    PubMed Central  PubMed  Google Scholar 

  98. Prigogine I (1980) From being to becoming. Freeman, San Francisco

  99. Popper K (1972) Objective knowledge. An evolutionary approach. Oxford University Press, Oxford

    Google Scholar 

  100. Prigogine I, Stengers I (1984) Order out of chaos. Heinemann, London

    Google Scholar 

  101. Rasmussen S, Chen L, Nilsson M, Shigeaki A (2003) Bridging nonliving and living matter. Artif Life 9:269–316

    PubMed  Google Scholar 

  102. Rohwer F, Barott K (2013) Viral information. Biol Philos 28:283–197

    PubMed Central  PubMed  Google Scholar 

  103. Rosen R (1966) A note on replication in (M, R) systems. Bull Math Biophys 28:149–151

    CAS  PubMed  Google Scholar 

  104. Rosen R (1967) Further comments on replication in (M, R) systems. Bull Math Biophys 29:91–94

    Google Scholar 

  105. Rosen R (1971) Some realizations of (M, R) systems and their interpretation. Bull Math Biophys 33:303–319

    CAS  PubMed  Google Scholar 

  106. Rosslenbroich B (2009) The theory of increasing autonomy in evolution: a proposal for understanding macroevolutionary innovations. Biol Philos 24:623–644

    Google Scholar 

  107. Ruiz-Mirazo K, Moreno A (2012) Autonomy in evolution: from minimal to complex life. Synthese 185:21–52

    Google Scholar 

  108. Scott A (1995) Stairway to the mind. Springer, New York

    Google Scholar 

  109. Sedlak W (1988) Introduction to bioelectronics. Osslineum, Wrocław (in Polish)

    Google Scholar 

  110. Shannon CE (1949) The mathematical theory of communication. University of Illinois Press, Urbana

    Google Scholar 

  111. Shapiro R (1986) Origins: a sceptic’s guide to the creation of life on earth. Summit Books, New York

    Google Scholar 

  112. Shields C (2012) The dialectic of life. Synthese 185:103–124

    Google Scholar 

  113. Smith E (2008) Thermodynamics of natural selection I: energy flow and the limits on organization. J Theor Biol 252:185–197

    CAS  PubMed  Google Scholar 

  114. Smith E (2008) Thermodynamics of natural selection II: chemical carnot cycles. J Theor Biol 252:198–212

    CAS  PubMed  Google Scholar 

  115. Smith E (2008) Thermodynamics of natural selection III: Landauer’s principle in computation and chemistry. J Theor Biol 252:213–220

    CAS  PubMed  Google Scholar 

  116. Struzik T (1987) Kȩpiński’s information metabolism, Carnot’s principle, and information theory. Int J Neurosci 36:105–112

    CAS  PubMed  Google Scholar 

  117. Struzik T (1987) Kȩpiński’s functional structures, Kohonen’s topological structures, aphasia and apraxia. Int J Neurosci 36:113–118

    CAS  PubMed  Google Scholar 

  118. Tadeusiewicz R (1994) Problems of biocybernetics. PWN, Warszawa (in Polish)

    Google Scholar 

  119. Toyabe S, Sagawa T, Ueda M, Muneyuki E, Sano M (2010) Experimental demonstration of information-to-energy conversion and validation of the generalized Jarzynski equality. Nat Phys 6:988–992

    CAS  Google Scholar 

  120. Wächtershäuser G (2006) From volcanic origins of chemoautotrophic metabolism. Philos Trans R Soc Lond B 361:1787–1806

    Google Scholar 

  121. Waxman SG (1972) Regional differentiation of the axon: a review with special reference to the concept of the multiplex neuron. Brain Res 47:269–288

    CAS  PubMed  Google Scholar 

  122. Wiener N (1947) Cybernetics or control and communication in the animal and the machine. MIT Press, Cambridge

    Google Scholar 

  123. Wills PR (2009) Informed generation: physical origin and biological evolution of genetic codescript interpreters. J Theor Biol 257:345–358

    CAS  PubMed  Google Scholar 

  124. Wolkenhauer O (2001) Systems biology: the reincarnation of systems theory applied in biology? Brief Bioinform 2:258–270

    CAS  PubMed  Google Scholar 

  125. Yao X (1993) A review of evolutionary artificial neural networks. J Intell Syst 8:539–567

    Google Scholar 

Download references

Acknowledgments

The author is grateful to Professor Bernard Korzeniewski and Doctor Jerzy Rychlewski for inspiring discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrzej Bielecki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bielecki, A. The general entity of life: a cybernetic approach. Biol Cybern 109, 401–419 (2015). https://doi.org/10.1007/s00422-015-0652-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-015-0652-8

Keywords

Navigation