Abstract
A wide range of evidence has shown that information encoding performed by the visual cortex involves complex activities of neuronal populations. However, the effects of the neuronal connectivity structure on the population’s encoding performance remain poorly understood. In this paper, a small-world-based population encoding model of the primary visual cortex (V1) is established on the basis of the generalized linear model (GLM) to describe the computation of the neuronal population. The model mainly consists of three sets of filters, including a spatiotemporal stimulus filter, a post-spike history filter, and a set of coupled filters with the coupling neurons organizing as a small-world network. The parameters of the model were fitted with neuronal data of the rat V1 recorded with a micro-electrode array. Compared to the traditional GLM, without considering the small-world structure of the neuronal population, the proposed model was proved to produce more accurate spiking response to grating stimuli and enhance the capability of the neuronal population to carry information. The comparison results proved the validity of the proposed model and further suggest the role of small-world structure in the encoding performance of local populations in V1, which provides new insights for understanding encoding mechanisms of a small scale population in visual system.







Similar content being viewed by others
References
Achard S, Bullmore E (2007) Efficiency and cost of economical brain functional networks. PLoS Comput Biol 3(2):e17. doi:10.1371/journal.pcbi.0030017
Achard S, Salvador R, Whitcher B, Suckling J, Bullmore E (2006) A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. J Neurosci 26(1):63–72. doi:10.1523/JNEUROSCI.3874-05.2006
Andersen P, Borgan O, Gill R, Keiding N (1992) Statistical models based on counting processes. Springer, New York
Ashe J, Georgopoulos AP (1994) Movement parameters and neural activity in motor cortex and area 5. Cereb Cortex 4(6):590– 600
Bassett D, Bullmore E (2006) Small-world brain networks. Neuroscientist 12(6):512–523. doi:10.1177/1073858406293182
Berens P, Ecker A, Gerwinn S, Tolias A, Bethge M (2011) Reassessing optimal neural population codes with neurometric functions. Proc Natl Acad Sci USA 108(11):4423–4428. doi:10.1073/pnas.1015904108
Bishop C (2007) Pattern recognition and machine learning. Springer, Berlin
Brillinger DR (1988) Maximum likelihood analysis of spike trains of interacting nerve cells. Biol Cybern 59(3):189–200
Chornoboy ES, Schramm LP, Karr AF (1988) Maximum likelihood identification of neural point process systems. Biol Cybern 59(4–5):265–275
Eavani H, Satterthwaite TD, Filipovych R, Gur RE, Gur RC, Davatzikos C (2015) Identifying Sparse Connectivity Patterns in the brain using resting-state fMRI. Neuroimage 105:286–299. doi:10.1016/j.neuroimage.2014.09.058
Eldawlatly S, Jin R, Oweiss KG (2009) Identifying functional connectivity in large-scale neural ensemble recordings: a multiscale data mining approach. Neural Comput 21(2):450–477. doi:10.1162/neco.2008.09-07-606
Friedman J, Hastie T, Tibshirani R (2010) Regularization paths for generalized linear models via coordinate descent. J Stat Softw 33(1):1–22
Fu QG, Flament D, Coltz JD, Ebner TJ (1995) Temporal encoding of movement kinematics in the discharge of primate primary motor and premotor neurons. J Neurophysiol 73(2):836– 854
Gerhard F, Pipa G, Lima B, Neuenschwander S, Gerstner W (2011) Extraction of network topology from multi-electrode recordings: is there a small-world effect? Front Comput Neurosci 5:4. doi:10.3389/fncom.2011.00004
Harris KD, Csicsvari J, Hirase H, Dragoi G, Buzsáki G (2003) Organization of cell assemblies in the hippocampus. Nature 424(6948):552–556. doi:10.1038/nature01834
Haslinger R, Pipa G, Lewis L, Nikolic D, Williams Z, Brown E (2013) Encoding through patterns: regression tree-based neuronal population models. Neural Comput 25(8):1953–1993. doi:10.1162/NECO_a_00464
He Y, Chen ZJ, Evans AC (2007) Small-world anatomical networks in the human brain revealed by cortical thickness from MRI. Cereb Cortex 17(10):2407–2419. doi:10.1093/cercor/bhl149
Hubel DH, Wiesel TN (1962) Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J Physiol 160:106–154
Humphries MD, Gurney K, Prescott TJ (2006) The brainstem reticular formation is a small-world, not scale-free, network. Proc Biol Sci 273(1585):503–511. doi:10.1098/rspb.2005.3354
Jones JP, Stepnoski A, Palmer LA (1987) The two-dimensional spectral structure of simple receptive fields in cat striate cortex. J Neurophysiol 58(6):1212–1232
Kaiser M (2008) Mean clustering coefficients: the role of isolated nodes and leafs on clustering measures for small-world networks. New J Phys 10:083042. doi:10.1088/1367-2630/10/8/083042
Kaiener B, Helias M, Aertsen A, Rotter S (2009) Correlations in spiking neuronal networks with distance dependent connections. J Comput Neurosci 27(2):177–200. doi:10.1007/s10827-008-0135-1
Kriener B, Tetzlaff T, Aertsen A, Diesmann M, Rotter S (2008) Correlations and population dynamics in cortical networks. Neural Comput 20(9):2185–2226. doi:10.1162/neco.2008.02-07-474
Lawhern V, Wu W, Hatsopoulos N, Paninski L (2010) Population decoding of motor cortical activity using a generalized linear model with hidden states. J Neurosci Methods 189(2):267–280. doi:10.1016/j.jneumeth.2010.03.024
Leergaard TB, Hilgetag CC, Sporns O (2012) Mapping the connectome: multi-level analysis of brain connectivity. Front Neuroinform 6:14. doi:10.3389/fninf.2012.00014
Liu K, Yao H (2014) Contrast-dependent OFF-dominance in cat primary visual cortex facilitates discrimination of stimuli with natural contrast statistics. Eur J Neurosci 39(12):2060–2070. doi:10.1111/ejn.12567
Luczak A, Hackett TA, Kajikawa Y, Laubach M (2004) Multivariate receptive field mapping in marmoset auditory cortex. J Neurosci Methods 136(1):77–85. doi:10.1016/j.jneumeth.2003.12.019
McCullagh P, Nelder J (1989) Generalized linear models. CRC, Chapman and Hall, New York
Okatan M, Wilson MA, Brown EN (2005) Analyzing functional connectivity using a network likelihood model of ensemble neural spiking activity. Neural Comput 17(9):1927–1961. doi:10.1162/0899766054322973
Paninski L (2004) Maximum likelihood estimation of cascade point-process neural encoding models. Network 15(4):243–262
Partzsch J, Schüffny R (2012) Developing structural constraints on connectivity for biologically embedded neural networks. Biol Cybern 106(3):191–200. doi:10.1007/s00422-012-0489-3
Pernice V, Deger M, Cardanobile S, Rotter S (2013) The relevance of network micro-structure for neural dynamics. Front Comput Neurosci 7:72. doi:10.3389/fncom.2013.00072
Pernice V, Staude B, Cardanobile S, Rotter S (2011) How structure determines correlations in neuronal networks. PLoS Comput Biol 7(5):e1002059. doi:10.1371/journal.pcbi.1002059
Pillow JW, Paninski L, Uzzell VJ, Simoncelli EP, Chichilnisky EJ (2005) Prediction and decoding of retinal ganglion cell responses with a probabilistic spiking model. J Neurosci 25(47):11003–11013. doi:10.1523/JNEUROSCI.3305-05.2005
Pillow JW, Shlens J, Paninski L, Sher A, Litke AM, Chichilnisky EJ, Simoncelli EP (2008) Spatio-temporal correlations and visual signalling in a complete neuronal population. Nature 454(7207):995–999. doi:10.1038/nature07140
Simoncelli E, Paninski L, Pillow J (2004) The cognitive neurosciences (Chapter 23). MIT, Cambridge
Sporns O, Zwi JD (2004) The small world of the cerebral cortex. Neuroinformatics 2(2):145–162. doi:10.1385/NI:2:2:145
Sun W, Dan Y (2009) Layer-specific network oscillation and spatiotemporal receptive field in the visual cortex. Proc Natl Acad Sci USA 106(42):17986–17991. doi:10.1073/pnas.0903962106
Trousdale J, Hu Y, Shea-Brown E, Josić K (2012) Impact of network structure and cellular response on spike time correlations. PLoS Comput Biol 8(3):e1002408. doi:10.1371/journal.pcbi.1002408
Trousdale J, Hu Y, Shea-Brown E, Josić K (2013) A generative spike train model with time-structured higher order correlations. Front Comput Neurosci 7:84. doi:10.3389/fncom.2013.00084
Truccolo W, Eden UT, Fellows MR, Donoghue JP, Brown EN (2005) A point process framework for relating neural spiking activity to spiking history, neural ensemble, and extrinsic covariate effects. J Neurophysiol 93(2):1074–1089. doi:10.1152/jn.00697.2004
Truccolo W, Hochberg LR, Donoghue JP (2010) Collective dynamics in human and monkey sensorimotor cortex: predicting single neuron spikes. Nat Neurosci 13(1):105–111. doi:10.1038/nn.2455
Wang Z, Shi L, Wan H, Niu X (2011) An information integration model of the primary visual cortex under grating stimulations. Biochem Biophys Res Commun 413(1):5–9. doi:10.1016/j.bbrc.2011.07.120
Wen Y, Zhang Q (2009) Ensemble cortical responses to rival visual stimuli: effect of monocular transient. Biochem Biophys Res Commun 380(1):105–110. doi:10.1016/j.bbrc.2009.01.042
Yu S, Huang D, Singer W, Nikolic D (2008) A small world of neuronal synchrony. Cereb Cortex 18(12):2891–2901. doi:10.1093/cercor/bhn047
Zhao Q, Meng Y, Xu Z (2012) L1/2 regularized logistic regression. Pattern Recog Artif Intell 25:721–728
Zheng Y, Wang Q, Danca MF (2014) Noise induced complexity: patterns and collective phenomena in a small-world neuronal network. Cogn Neurodyn 8(2):143–149. doi:10.1007/s11571-013-9257-x
Acknowledgments
This study was supported by a Grant (U1304602) from the National Natural Science Foundation of China and a Grant (122102210102) from the key scientific and technological project of Henan province.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Shi, L., Niu, X., Wan, H. et al. A small-world-based population encoding model of the primary visual cortex. Biol Cybern 109, 377–388 (2015). https://doi.org/10.1007/s00422-015-0649-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00422-015-0649-3