Intrinsic variability of latency to first-spike | Biological Cybernetics
Skip to main content

Intrinsic variability of latency to first-spike

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

An Erratum to this article was published on 29 October 2011

Abstract

The assessment of the variability of neuronal spike timing is fundamental to gain understanding of latency coding. Based on recent mathematical results, we investigate theoretically the impact of channel noise on latency variability. For large numbers of ion channels, we derive the asymptotic distribution of latency, together with an explicit expression for its variance. Consequences in terms of information processing are studied with Fisher information in the Morris–Lecar model. A competition between sensitivity to input and precision is responsible for favoring two distinct regimes of latencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adair RK (2003) Noise and stochastic resonance in voltage-gated ion channels. Biosystems 100(21): 12099–12104

    CAS  Google Scholar 

  • Arhem P, Blomberg C (2007) Ion channel density and threshold dynamics of repetitive firing in a cortical neuron model. Biosystems 89(1–3): 117–125

    Article  PubMed  Google Scholar 

  • Berry MJ, Warland DK, Meister M (1997) The structure and precision of retinal spike trains. Proc Natl Acad Sci USA 94: 5411–5416

    Article  PubMed  CAS  Google Scholar 

  • Chase SM, Young ED (2008) Cues for sound localization are encoded in multiple aspects of spike trains in the inferior colliculus. J Neurophysiol 99: 1672–1682

    Article  PubMed  Google Scholar 

  • Chen Y, Yu L, Qin SM (2008) Detection of subthreshold pulses in neurons with channel noise. Phys Rev E 78: 51909

    Article  Google Scholar 

  • Chow CC, White JA (1996) Spontaneous action potentials due to channel fluctuations. Biophys J 71(6): 3013–3021

    Article  PubMed  CAS  Google Scholar 

  • Colbert CM, Johnston D (1996) Axonal action-potential initiation and Na+ channel densities in the soma and axon initial segment of subicular pyramidal neurons. J. Neurosci 16(21): 6676–6686

    PubMed  CAS  Google Scholar 

  • Colbert CM, Pan P (2002) Ion channel properties underlying axonal action potential initiation in pyramidal neurons. Nat Neurosci 5(6): 533–538

    Article  PubMed  CAS  Google Scholar 

  • Ethier SN, Kurtz TG (1986) Markov processes, characterization and convergence. John Wiley and Sons, Inc

  • Furukawa S, Middlebrooks JC (2002) Cortical representation of auditory space: information-bearing features of spike patterns. J Neurophysiol 87: 1749–1762

    PubMed  Google Scholar 

  • Gillespie DT (1977) Exact stochastic simulation of coupled chemical reactions. J Phys Chem 81(25): 2340–2361

    Article  CAS  Google Scholar 

  • Gollisch T, Meister M (2008) Rapid neural coding in the retina with relative spike latencies. Science 319(1): 1108–1111

    Article  PubMed  CAS  Google Scholar 

  • Guyonneau R, VanRullen R, Thorpe SJ (2005) Spike times make sense. Trends Neurosci 28(1): 1–4

    Article  PubMed  Google Scholar 

  • Heil P (2004) First-spike latency of auditory neurons revisited. Curr Opin Neurobiol 14: 461–467

    Article  PubMed  CAS  Google Scholar 

  • Hille B (2001) Ion channels of excitable membranes. Sinauer, Sunderland, MA

  • Hodgkin AL (1948) The local electric changes associated with repetitive action in a non-medullated axon. J Physiol 107: 165–181

    PubMed  CAS  Google Scholar 

  • Izhikevich EM (2007) Dynamical systems in neuroscience: the geometry of excitability and bursting. In: Computational neuroscience. MIT Press

  • Jenison RL, Reale RA (2003) Likelihood approaches to sensory coding in auditory cortex. Netw Comput Neural Syst 14: 83–102

    Google Scholar 

  • Johansson RS, Birznieks I (2004) First spikes in ensembles of human tactile afferents code complex spatial fingertip events. Nat Neurosci 7: 170–177

    Article  PubMed  CAS  Google Scholar 

  • Kiani R, Esteky H, Tanaka K (2005) Differences in onset latency of macaque inferotemporal neural responses to primate and non-primate faces. J Neurophysiol 94(2): 1587–1596

    Article  PubMed  Google Scholar 

  • Kjaer TW, Gawne TJ, Richmond BJ (1996) Latency: another potential code for feature binding in striate cortex. J Neurophysiol 76(2): 1356–1360

    PubMed  Google Scholar 

  • Krishna BS (2002) A unified mechanism for spontaneous-rate and first-spike timing in the auditory nerve. J Comput Neurosci 13: 71–91

    Article  PubMed  Google Scholar 

  • Lansky P, Musila M (1991) Variable initial depolarization in Stein’s neuronal model with synaptic reversal potentials. Biol Cybern 64: 285–291

    Article  PubMed  CAS  Google Scholar 

  • Liberman MC (1978) Auditory-nerve response from cats raised in a low-noise chamber. J Acoust Soc Am 63(2): 442–455

    Article  PubMed  CAS  Google Scholar 

  • Manns D, Westecker ME (1983) Antidromic activation of spikes with bimodal and trimodal latencies in the olfactory bulb of rabbits. Brain Res 288(1–2): 119–130

    PubMed  Google Scholar 

  • Mormann F, Kornblith S, Quian Quiroga R, Kraskov A, Cerf M, Fried I, Koch C (2008) Latency and selectivity of single neurons indicate hierarchical processing in the human medial temporal lobe. J Neurosci 28(36): 8865–8872

    Article  PubMed  CAS  Google Scholar 

  • Morris C, Lecar H (1981) Voltage oscillations in the barnacle giant muscle fiber. Biophys J 35(1): 193–213

    Article  PubMed  CAS  Google Scholar 

  • Oser M, Uzuntarla M (2008) Effects of the network structure and coupling strength on the noise-induced response delay of a neuronal network. Phys Lett A 372: 4603–4609

    Article  Google Scholar 

  • Pakdaman K, Thieullen M, Wainrib G (2009) Fluid limit theorems for stochastic hybrid systems with application to neuron models. J Appl Probab (accepted)

  • Pankratova EV, Polovinkin AV, Mosekilde E (2005) Resonant activation in a stochastic Hodgkin-Huxley model: Interplay between noise and suprathreshold driving effects. Eur Phys J B 45: 391–397

    Article  CAS  Google Scholar 

  • Panzeri S, Petersen RS, Schultz SR, Lebedev M, Diamond ME (2001) The role of spike timing in the coding of stimulus location in rat somatosensory cortex. Neuron 29: 769–777

    Article  PubMed  CAS  Google Scholar 

  • Reulen JPH (1984) Latency of visually evoked saccadic eye movements. Biol Cybern 50(4): 251–262

    Article  PubMed  CAS  Google Scholar 

  • Rinzel J, Ermentrout GB (1989) Analysis of neural excitability and oscillations. In: Methods in neuronal modeling: from synapses to networks, MIT Press, Cambridge, MA, pp 135–169

  • Rowat P (2007) Interspike interval statistics in the stochastic Hodgkin–Huxley model: coexistence of gamma frequency bursts and highly irregular firing. Neural Comput 19(5): 1215

    Article  PubMed  Google Scholar 

  • Ruggero MA (1992) Physiology and coding of sound in the auditory nerve. In: Popper AN, Fay RR (eds) The mammalian auditory pathway. Springer-Verlag, New York, pp 34–93

    Chapter  Google Scholar 

  • Schneidman E, Freedman B, Segev I (1998) Ion channel stochasticity may be critical in determining the reliability and precision of spike timing. Neural Comput 10(7): 1679–1703

    Article  PubMed  CAS  Google Scholar 

  • Shuai JW, Jung P (2003) Optimal ion channel clustering for intracellular calcium signaling. Proc Natl Acad Sci 100(2): 506–512

    Article  PubMed  CAS  Google Scholar 

  • Skaugen E, Walloe L (1979) Firing behavior in a stochastic nerve membrane model based upon the Hodgkin–Huxley equations. Acta Physiol Scand 107(4): 343–363

    Article  PubMed  CAS  Google Scholar 

  • Tanabe S, Pakdaman K (2001) Noise-induced transitions in excitable neuron models. Biol Cybern 85: 269–280

    Article  PubMed  CAS  Google Scholar 

  • Thorpe S, Fize D, Marlot C (1996) Speed of processing in the human visual system. Nature 381(6582): 520–522

    Article  PubMed  CAS  Google Scholar 

  • Tuckwell HC, Wan FYM (2005) Time to first spike in stochastic hodgkinhuxley systems. Physica A 351(2–4): 427–438

    Article  Google Scholar 

  • van Rossum MCW (2001) The transient precision of integrate and fire neurons: effect of background activity and noise. J Comput Neurosci 10: 303–311

    Article  PubMed  Google Scholar 

  • van Rossum MCW, O’Brien BJ, Smith RG (2003) Effects of noise on the spike timing precision of retinal ganglion cells. J Neurophysiol 89: 2406–2419

    Article  PubMed  Google Scholar 

  • Van Rullen R (2003) Visual saliency and spike timing in the ventral visual pathway. J Physiol Paris 97(2-3): 365–377

    Article  Google Scholar 

  • Verveen AA, Derksen HE (1965) Fluctuations in membrane potential of axons and the problem of coding. Biol Cybern 2(4): 153–160

    Google Scholar 

  • Wollner DA, Catterall WA (1986) Localization of sodium channels in axon hillocks and initial segments of retinal ganglion cells. Proc Natl Acad Sci USA 83(21): 8424–8428

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wainrib Gilles.

Additional information

An erratum to this article can be found online at http://dx.doi.org/10.1007/s00422-011-0462-6

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gilles, W., Michèle, T. & Khashayar, P. Intrinsic variability of latency to first-spike. Biol Cybern 103, 43–56 (2010). https://doi.org/10.1007/s00422-010-0384-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-010-0384-8

Keywords