Motion parallax contribution to perception of self-motion and depth | Biological Cybernetics Skip to main content
Log in

Motion parallax contribution to perception of self-motion and depth

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

The object of this study is to mathematically specify important characteristics of visual flow during translation of the eye for the perception of depth and self-motion. We address various strategies by which the central nervous system may estimate self-motion and depth from motion parallax, using equations for the visual velocity field generated by translation of the eye through space. Our results focus on information provided by the movement and deformation of three-dimensional objects and on local flow behavior around a fixated point. All of these issues are addressed mathematically in terms of definite equations for the optic flow. This formal characterization of the visual information presented to the observer is then considered in parallel with other sensory cues to self-motion in order to see how these contribute to the effective use of visual motion parallax, and how parallactic flow can, conversely, contribute to the sense of self-motion. This article will focus on a central case, for understanding of motion parallax in spacious real-world environments, of monocular visual cues observable during pure horizontal translation of the eye through a stationary environment. We suggest that the global optokinetic stimulus associated with visual motion parallax must converge in significant fashion with vestibular and proprioceptive pathways that carry signals related to self-motion. Suggestions of experiments to test some of the predictions of this study are made.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Angelaki DE, Hess BJM (2005) Self-motion-induced eye movements: effects on visual acuity and navigation. Nature Rev Neurosci 6(12): 966–976

    Article  CAS  Google Scholar 

  • Andersen RA (1997) Multimodal integration for the representation of space in the posterior parietal cortex. Phli as Trans R Soc Lond B 352: 1421–1428

    Article  CAS  Google Scholar 

  • Banks MS, Ehrlich SM, Backus BT, Crowell JA (1996) Estimating heading during real and simulated eye movements. Vision Res 36(3): 431–443

    Article  PubMed  CAS  Google Scholar 

  • Becker W, Raab S, Jürgens R (2002) Circular vection during voluntary suppression of optokinetic reflex. Exp Brain Res 144(4): 554–557

    Article  PubMed  Google Scholar 

  • Beintema J, Berg AV (1998) Heading detection using motion templates and eye velocity gain fields. Vision Res 38: 2155–2179

    Article  PubMed  CAS  Google Scholar 

  • Berthoz A, Israël I, Georges-Francois P, Grasso R, Tsuzuku T (1995) Spatial memory of body linear displacement: what is being stored. Science 269: 95–98

    Article  PubMed  CAS  Google Scholar 

  • Bertin RJV, Berthoz A (2004) Visuo-vestibular interaction in the reconstruction of travelled trajectories. Exp Brain Res 154: 11–21

    Article  PubMed  CAS  Google Scholar 

  • Bertin RJV, Israël I (2005) Optic-flow-based perception of two-dimensional trajectories and the effects of a single landmark. Perception 34(4): 453–475

    Article  PubMed  Google Scholar 

  • Bertin RJV, Israël I, Lappe M (2000) Perception of two-dimensional, simulated ego-motion trajectories from optic flow. Vision Research 40: 2951–2971

    Article  PubMed  CAS  Google Scholar 

  • Beusmans JMH (1998) Perceived object shape affects the perceived direction of self-movement. Perception 27(9): 1079–1085

    Article  PubMed  CAS  Google Scholar 

  • Beverly KI, Regan D (1979) Separable aftereffects of changing size and motion in depth: Different neural mechanisms?. Vision Res 19: 727–733

    Article  Google Scholar 

  • Bremmer F, Duhamel JR, Ben Hamed S, Graf W (2002) Heading encoding in the macaque ventral intraparietal area (VIP). Eur J Neurosci 16(8): 1554–1568

    Article  PubMed  Google Scholar 

  • Bremmer F, Kubischik M, Pekel M, Lappe M, Hoffmann KP (1999) Linear vestibular self-motion signals in monkey medial superior temporal area. Ann NY Acad Sci 871: 272–281

    Article  PubMed  CAS  Google Scholar 

  • Bremmer F, Lappe M (1999) The use of optical velocities for distance discrimination and reproduction during visually simulated self motion. Exp Brain Res 127(1): 33–42

    Article  PubMed  CAS  Google Scholar 

  • Bronstein AM, Buckwell D (1997) Automatic control of postural sway by visual motion parallax. Exp Brain Res 113: 243–248

    Article  PubMed  CAS  Google Scholar 

  • Chen-Huang C, McCrea RA (1999a) Effects of viewing distance on the responses of horizontal canal-related secondary vestibular neurons during angular head rotation. J Neurophysiol 81: 2517–2537

    PubMed  CAS  Google Scholar 

  • Chen-Huang C, McCrea RA (1999b) Effects of viewing distance on the responses of vestibular neurons to combined angular and linear vestibular stimulation. J Neurophysiol 81: 2538–2557

    PubMed  CAS  Google Scholar 

  • Cooper HM, Magnin M (1986) A common mammalian plan of accessory optic system organization revealed in all primates. Nature 324(6096): 457–459

    Article  PubMed  CAS  Google Scholar 

  • Crowell JA, Banks MS, Shenoy KV, Andersen RA (1998) Visual self-motion perception during head turns. Nature Neurosci 1(8): 732–737

    Article  PubMed  CAS  Google Scholar 

  • Cutting JE (1996) Wayfinding from multiple sources of local information in retinal flow. J Exp Psychol: Human Percept Perform 22: 1299–1313

    Article  Google Scholar 

  • Cutting JE, Vishton PM, Flückiger M, Baumberger B, Gerndt JD (1997) Heading and path information from retinal flow in naturalistic environments. Percept Psychophys 59(3): 426–441

    PubMed  CAS  Google Scholar 

  • Droulez J, Conilleau-Péres (1990) Visual perception of surface curvature. The spin variation and its physiological implications. Biol Cybern 62: 211–224

    CAS  Google Scholar 

  • Duffy CJ (1998) MST neurons respond to optic flow and translational movement. J Neurophysiol 80: 1816–1827

    PubMed  CAS  Google Scholar 

  • Faubert J (2001) Motion parallax, stereoscopy, and the perception of depth: Practical and theoretical issues. In: Javidi B, Okano F (eds) Three-Dimensional Video and Display: Devices and Systems. Proceedings of SPIE, vol. CR76, pp 168–191

  • Fite KV (1985) Pretectal and accessory-optic visual nuclei of fish, amphibia and reptiles: theme and variations. Brain Behav Evol 16: 192–202

    Article  Google Scholar 

  • Franz MO, Chahl JS, Krapp HG (2004) Insect-inspired estimation of egomotion. Neural Comput 16(11): 2245–2260

    Article  PubMed  Google Scholar 

  • Freeman TCA, Fowler TA (2000) Unequal retinal and extra-retinal motion signals produce different perceived slants of moving surfaces. Vision Res 40: 1857–1868

    Article  PubMed  CAS  Google Scholar 

  • Frenz H, Lappe M (2005) Absolute travel distance from optic flow. Vision Res 45: 1679–1692

    Article  PubMed  Google Scholar 

  • Frost BJ (1993) Subcortical analysis of visual motion: Relative motion, figure-ground discrimination and self-induced optic flow. In: Miles FA, Wallman J(eds) Visual Motion and its Role in the Stabilization of the Gaze. Elsevier, Amsterdam, pp 159–175

    Google Scholar 

  • Frost BJ, Wylie DR, Wang Y-C (1990) The processing of object and self-motion in the tectofugal and accessory optic pathways of birds. Vision Res 30(11): 1677–1688

    Article  PubMed  CAS  Google Scholar 

  • Gibson JJ (1950) The Perception of the Visual World. Houghton Mifflin, Boston

    Google Scholar 

  • Gibson JJ, Olum P, Rosenblatt F (1955) Parallax and perspective during aircraft landings. Am J Psychol 68: 372–385

    Article  PubMed  CAS  Google Scholar 

  • Goldberg JM, Fernández C (1984) The vestibular system. In: Brookhart JM, Mountcastle VB, Darian-Smith I(eds) Handbook of Physiology – The Nervous System III. American Physiological Society, Baltimore, pp 977–1022

    Google Scholar 

  • Gordon DA (1965) Static and dynamic fields in human space perception. J Opt Soc Am 55: 1296–1303

    PubMed  CAS  Google Scholar 

  • Graziano MSA, Andersen RA, Snowden RJ (1994) Tuning of MST neurons to spiral motions. J Neurosci 14(1): 54–67

    PubMed  CAS  Google Scholar 

  • Grigo A, Lappe M (1998) An analysis of heading towards a wall. In: Harris LR, Jenkin M(eds) Vision and action. Cambridge University Press, Cambridge, pp 215–229

    Google Scholar 

  • Grimm RJ, Hemenway WG, Lebray PR, Black FO (1989) The perilymph fistula syndrome defined in mild head trauma. Acta Otolaryngol Suppl 464: 1–40

    PubMed  CAS  Google Scholar 

  • Hanes DA, McCollum G (2006) Variables contributing to the coordination of eye/head gaze shifts. Biol Cybern 94(4): 300–324

    Article  PubMed  Google Scholar 

  • Harris LR (1994) Visual motion caused by movements of the eye, head, and body. In: Smith AT, Snowden R(eds) Visual detection of motion. Academic Press, London, pp 397–436

    Google Scholar 

  • Harris LR, Jenkin M, Zikowitz DC (2000) Visual and non-visual cues in the perception of linear self motion. Exp Brain Res 135: 12–21

    Article  PubMed  CAS  Google Scholar 

  • Heeger DJ, Jepson AD (1992) Subspace methods for recovering rigid motion I: algorithm and implementation. Int J Comput. Vision 7(2): 95–117

    Article  Google Scholar 

  • Israël I, Grasso R, Georges-Francois P, Tsuzuku T, Berthoz A (1997) Spatial memory and path integration studied by self-driven linear displacement. I. Basic properties. J Neurophysiol 77: 3180–3192

    PubMed  Google Scholar 

  • Jacob RG, Furman JM, Durrant JD, Turner SM (1996) Panic, Agoraphobia, and Vestibular Dysfunction. Am J Psychiatry 153: 503–512

    PubMed  CAS  Google Scholar 

  • Keshner EA, Kenyon RV (2000) The influence of an immersive virtual environment on the segmental organization of postural stabilizing responses. J Vestib Res 10: 207–219

    PubMed  CAS  Google Scholar 

  • Koenderink JJ, Doorn AJ (1987) Facts on optic flow. Biol Cybern 56(4): 247–254

    Article  PubMed  CAS  Google Scholar 

  • Koenderink JJ, Doorn AJ (1976) Local structure of movement parallax of the plane. J Opt Soc Am 66: 717–723

    Google Scholar 

  • Lackner JR, DiZio P (1988) Visual stimulation affects the perception of voluntary leg movements during walking. Perception 17: 71–80

    Article  PubMed  CAS  Google Scholar 

  • Land MF, Lee DN (1994) Where we look when we steer. Nature 369(6483): 742–4

    Article  PubMed  CAS  Google Scholar 

  • Lappe M (1998) A model of the combination of optic flow and extraretinal eye movement signals in primate extrastriate visual cortex. Neural Netw 11: 397–414

    Article  PubMed  Google Scholar 

  • Lappe M, Bremmer F, van den Berg AV (1999) Perception of self-motion from visual flow. Trends Cogn Sci 3(9): 329–336

    Article  PubMed  Google Scholar 

  • Lappe M, Rauschecker JP (1993) A neural network for the processing of optic flow from ego-motion in man and higher mammals. Neural Comput 5: 374–391

    Article  Google Scholar 

  • Longuet-Higgins HC, Prazdny K (1980) The interpretation of a moving retinal image. Proc R Soc Lond B 208: 385–397

    PubMed  CAS  Google Scholar 

  • Mergner T, Wertheim A, Rumberger A (2000) Which retinal and extra-retinal information is crucial for circular vection?. Arch Ital Biol 138(2): 123–38

    PubMed  CAS  Google Scholar 

  • Miles FA (1993) The sensing of rotational and translational optic flow by the primate optokinetic system. In: Miles FA, Wallman J(eds) Visual motion and its role in the stabilization of gaze. Elsevier, Amsterdam, pp 393–403

    Google Scholar 

  • Miles FA (1998) The neural processing of 3-D visual information: evidence from eye movements. Eur J Neurosci 10: 811–822

    Article  PubMed  CAS  Google Scholar 

  • Nakamura S (2006) Effects of depth, eccentricity and size of additional static stimulus on visually induced self-motion perception. Vision Res 46(15): 2344–53

    Article  PubMed  Google Scholar 

  • Nakayama K, Loomis JM (1974) Optical velocity patterns, velocity-sensitive neurons, and space perception: a hypothesis. Perception 3(1): 63–80

    Article  PubMed  CAS  Google Scholar 

  • Nawrot M (2003a) Eye movements provide the extra-retinal signal required for the perception of depth from motion parallax. Vision Res 43: 1553–1562

    Article  PubMed  Google Scholar 

  • Nawrot M (2003b) Depth from motion parallax scales with eye movement gain. J Vision 3: 841–851

    Article  Google Scholar 

  • Nawrot M (2000) Viewing distance, eye movements, and the perception of relative depth from motion parallax. Investigative Ophthalmol Visual Sci 39(4): S462

    Google Scholar 

  • Ono ME, Rivest J, Ono H (1986) Depth perception as a function of motion parallax and absolute-distance information. J Exp Psychol: Human Percept Perform 12: 331–337

    Article  CAS  Google Scholar 

  • Ono H, Sato T, Shioiri S, Ujike H (1998) An aftereffect of William Dember in motion: probing the signal for motion parallax. In: Hoffman RR, Sherrick MF, Warm JS(eds) Viewing psychology as a whole. APA, Washington, DC

    Google Scholar 

  • Ono H, Ujike H (1994) Apparent depth with motion aftereffect and head movement. Perception 23: 1241–1248

    Article  PubMed  CAS  Google Scholar 

  • Perrone JA, Stone LS (1994) A model of self-motion estimation within primate extrastriate visual cortex. Vision Res 34: 2917–2938

    Article  PubMed  CAS  Google Scholar 

  • Regan D (1986) Visual processing of four kinds of relative motion. Vision Res 26(1): 127–145

    Article  PubMed  CAS  Google Scholar 

  • Regan D, Beverly KI (1982) How do we avoid cofounding the direction we are looking with the direction we are moving?. Science 215: 194–196

    Article  PubMed  CAS  Google Scholar 

  • Regan D, Gray R, Portfors CV, Hamstra SJ, Vincent A, Hong XH, Kohly R, Beverly K (1998) Catching, hitting, and collision avoidance. In: Harris LR, Jenkin M(eds) Vision and action. Cambridge University press, Cambridge

    Google Scholar 

  • Rogers BJ (1993) Motion parallax and other dynamic cues for depth in humans. Rev Oculomot Res 5: 119–37

    PubMed  CAS  Google Scholar 

  • Rogers B, Graham M (1979) Motion parallax as an independent cue for depth perception. Perception 8: 125–134

    Article  PubMed  CAS  Google Scholar 

  • Royden CS (1994) Analysis of misperceived observer motion during simulated eye rotations. Vision Res 34: 3215–3222

    Article  PubMed  CAS  Google Scholar 

  • Thompson AM, Nawrot M (1999) Abnormal depth perception from motion parallax in amblyopic observers. Vision Res 39: 1407–1413

    Article  PubMed  CAS  Google Scholar 

  • Ujike H, Ono H (2001) Depth thresholds of motion parallax as a function of head movement velocity. Vision Res 41: 2835–2843

    Article  PubMed  CAS  Google Scholar 

  • Wang RF, Cutting JE (1999) Where we go with a little good information. Psychol Sci 10(1): 71–75

    Article  Google Scholar 

  • Warren WH, Hannon DJ (1990) Eye movements and optical flow. J Opt Soc Am A 7(1): 160–169

    Article  PubMed  Google Scholar 

  • Wei M, DeAngelis GC, Angelaki DE (2003) Do visual cues contribute to the neural estimate of viewing distance used by the oculomotor system?. J Neurosci 23(23): 8340–8350

    PubMed  CAS  Google Scholar 

  • Yong NA, Pasige GD, Seidman SH (2007) Multiple sensory cues underlying the perception of translation and path. J Neurophysiol 97(2): 1100–1113

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas A. Hanes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hanes, D.A., Keller, J. & McCollum, G. Motion parallax contribution to perception of self-motion and depth. Biol Cybern 98, 273–293 (2008). https://doi.org/10.1007/s00422-008-0224-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-008-0224-2

Keywords

Navigation