Physiology-based modeling of cortical auditory evoked potentials | Biological Cybernetics Skip to main content
Log in

Physiology-based modeling of cortical auditory evoked potentials

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

Evoked potentials are the transient electrical responses caused by changes in the brain following stimuli. This work uses a physiology-based continuum model of neuronal activity in the human brain to calculate theoretical cortical auditory evoked potentials (CAEPs) from the model’s linearized response. These are fitted to experimental data, allowing the fitted parameters to be related to brain physiology. This approach yields excellent fits to CAEP data, which can then be compared to fits of EEG spectra. It is shown that the differences between resting eyes-open EEG and standard CAEPs can be explained by changes in the physiology of populations of neurons in corticothalamic pathways, with notable similarities to certain aspects of slow-wave sleep. This pilot study demonstrates the ability of our model-based fitting method to provide information on the underlying physiology of the brain that is not available using standard methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ashwin P and Timme M (2005). Nonlinear dynamics: when instability makes sense. Nature 436: 36–37

    Article  PubMed  CAS  Google Scholar 

  • Barth DS and Di S (1990). Three-dimensional analysis of auditory-evoked potentials in rat neocortex. J Neurophysiol 64: 1527–1536

    PubMed  CAS  Google Scholar 

  • Blakemore C, Carpenter RH and Georgeson MA (1970). Lateral inhibition between orientation detectors in the human visual system. Nature 228: 37–39

    Article  PubMed  CAS  Google Scholar 

  • Bradley AP and Wilson WJ (2004). On wavelet analysis of auditory evoked potentials. Clin Neurophysiol 115: 1114–1128

    Article  PubMed  CAS  Google Scholar 

  • Crick F (1984). Function of the thalamic reticular complex: the searchlight hypothesis. Proc Natl Acad Sci USA 81: 4586–4590

    Article  PubMed  CAS  Google Scholar 

  • David O, Kiebel SJ, Harrison LM, Mattout J, Kilner JM and Friston KJ (2006). Dynamic causal modeling of evoked responses in EEG and MEG. Neuroimage 30: 1255–1272

    Article  PubMed  Google Scholar 

  • Freeman W (1975). Mass action in the nervous system. Academic Press, New York

    Google Scholar 

  • Gevins A (1996). High resolution evoked potentials of cognition. Brain Topogr 8: 189–199

    Article  PubMed  CAS  Google Scholar 

  • Goodin DS, Squires KC and Starr A (1978). Long latency event-related components of the auditory evoked potential in dementia. Brain 101: 635–648

    Article  PubMed  CAS  Google Scholar 

  • Gordon E, Cooper N, Rennie C, Hermens D and Williams LM (2005). Integrative neuroscience: the role of a standardized database. Clin EEG Neurosci 36: 64–75

    PubMed  CAS  Google Scholar 

  • Gratton G, Coles M and Donchin E (1983). A new method for off-line removal of ocular artifact. Electroencephalogr Clin Neurophysiol 55: 468–484

    Article  PubMed  CAS  Google Scholar 

  • Hausser M and Roth A (1997). Estimating the time course of the excitatory synaptic conductance in neocortical pyramidal cells using a novel voltage jump method. J Neurosci 17: 7606–7625

    PubMed  CAS  Google Scholar 

  • Horwitz B and Glabus MF (2005). Neural modeling and functional brain imaging: the interplay between the data-fitting and simulation approaches. Int Rev Neurobiol 66: 267–290

    Article  PubMed  Google Scholar 

  • Houtgast T (1972). Psychophysical evidence for lateral inhibition in hearing. J Acoust Soc Am 51: 1885–1894

    Article  PubMed  CAS  Google Scholar 

  • Jansen BH and Rit VG (1995). Electroencephalogram and visual evoked potential generation in a mathematical model of coupled cortical columns. Biol Cybern 73: 357–366

    Article  PubMed  CAS  Google Scholar 

  • Jirsa VK and Haken H (1996). Field theory of electromagnetic brain activity. Phys Rev Lett 77: 960–963

    Article  PubMed  CAS  Google Scholar 

  • Key AP, Dove GO and Maguire MJ (2005). Linking brainwaves to the brain: an ERP primer. Dev Neuropsychol 27: 183–215

    Article  PubMed  Google Scholar 

  • Koch C, Rapp M and Segev I (1996). A brief history of time (constants). Cereb Cortex 6: 93–101

    Article  PubMed  CAS  Google Scholar 

  • Kotchoubey B (2005). Event-related potential measures of consciousness: two equations with three unknowns. Prog Brain Res 150: 427–444

    PubMed  Google Scholar 

  • Lopes da Silva FH, Hoeks A, Smits H and Zetterberg LH (1974). Model of brain rhythmic activity. The alpha rhythm of the thalamus. Kybernetik 15: 27–37

    CAS  Google Scholar 

  • Mainardi LT, Kupila J, Nieminen K, Korhonen I, Bianchi AM, Pattini L, Takala J, Karhu J and Cerutti S (2000). Single sweep analysis of event related auditory potentials for the monitoring of sedation in cardiac surgery patients. Comput Methods Programs Biomed 63: 219–227

    Article  PubMed  CAS  Google Scholar 

  • Margrie TW, Sakmann B and Urban NN (2001). Action potential propagation in mitral cell lateral dendrites is decremental and controls recurrent and lateral inhibition in the mammalian olfactory bulb. Proc Natl Acad Sci USA 98: 319–324

    Article  PubMed  CAS  Google Scholar 

  • McDonald JJ, Teder-Salejarvi WA, Di Russo F and Hillyard SA (2005). Neural basis of auditory-induced shifts in visual time-order perception. Nature Neurosci 8: 1197–1202

    Article  PubMed  CAS  Google Scholar 

  • Meeren HK, Coenen AM, van Cappellen van Walsum AM and van Luijtelaar EL (2001). Auditory evoked potentials from auditory cortex, medial geniculate nucleus, and inferior colliculus during sleep-wake states and spike-wave discharges in the WAG/Rij rat. Brain Res 898: 321–331

    Article  PubMed  CAS  Google Scholar 

  • Näätänen R and Picton T (1987). The N1 wave of the human electric and magnetic response to sound: a review and an analysis of the component structure. Psychophysiology 24: 375–425

    Article  PubMed  Google Scholar 

  • Nielsen-Bohlman L, Knight RT, Woods DL and Woodward K (1991). Differential auditory processing continues during sleep. Electroencephalogr Clin Neurophysiol 79: 281–290

    Article  PubMed  CAS  Google Scholar 

  • Nordby H, Hugdahl K, Stickgold R, Bronnick KS and Hobson JA (1996). Event-related potentials (ERPs) to deviant auditory stimuli during sleep and waking. Brain Res Rev 7: 1082–1086

    CAS  Google Scholar 

  • Nunez PL (1974). Wave-like properties of the alpha rhythm. IEEE Trans Biomed Eng 21: 473–482

    Article  Google Scholar 

  • Nunez PL (1995). Neocortical dynamics and human EEG rhythms. Oxford University Press, New York

    Google Scholar 

  • Nunez PL and Silberstein RB (2000). On the relationship of synaptic activity to macroscopic measurements: does co-registration of EEG with fMRI make sense?. Brain Topogr 13: 79–96

    Article  PubMed  CAS  Google Scholar 

  • Nunez PL and Srinivasan R (2006). A theoretical basis for standing and traveling brain waves measured with human EEG with implications for an integrated consciousness. Clin Neurophysiol 117: 2424–2435

    Article  PubMed  Google Scholar 

  • O’Connor SC, Robinson PA and Chiang AKI (2002). Wave-number spectrum of electroencephalographic signals. Phys Rev E 66: 061905

    Article  CAS  Google Scholar 

  • Otis TS and Mody I (1992). Modulation of decay kinetics and frequency of GABAA receptor-mediated spontaneous inhibitory postsynaptic currents in hippocampal neurons. Neuroscience 49: 13–32

    Article  PubMed  CAS  Google Scholar 

  • Otis TS, De Koninck Y and Mody I (1993). Characterization of synaptically elicited GABAB responses using patch-clamp recordings in rat hippocampal slices. J Physiol 463: 391–407

    PubMed  CAS  Google Scholar 

  • Picton TW, Bentin S, Berg P, Donchin E, Hillyard SA, Johnson R, Miller GA, Ritter W, Ruchkin DS, Rugg MD and Taylor MJ (2000). Guidelines for using human event-related potentials to study cognition: recording standards and publication criteria. Psychophysiology 37: 127–152

    Article  PubMed  CAS  Google Scholar 

  • Polich J and Herbst K (2000). P300 as a clinical assay: rationale, evaluation and findings. Int J Psychophysiol 38: 3–19

    Article  PubMed  CAS  Google Scholar 

  • Press WH, Flannery BP, Teukolsky SA and Vetterling WT (1992). Numerical Recipes in C. Cambridge University Press, Cambridge

    Google Scholar 

  • Rennie CJ, Robinson PA and Wright JJ (1999). Effects of local feedback on dispersion of electrical waves in the cerebral cortex. Phys Rev E 59: 3320–3329

    Article  CAS  Google Scholar 

  • Rennie CJ, Robinson PA and Wright JJ (2002). Unified neurophysical model of EEG spectra and evoked potentials. Biol Cybern 86: 457–471

    Article  PubMed  CAS  Google Scholar 

  • Robinson PA, Rennie CJ and Wright JJ (1997). Propagation and stability of waves of electrical activity in the cerebral cortex. Phys Rev E 56: 826–840

    Article  CAS  Google Scholar 

  • Robinson PA, Loxley PN, O’Connor SC and Rennie CJ (2001). Modal analysis of corticothalamic dynamics, electroencephalographic spectra, and evoked potentials. Phys Rev E 63: 041909

    Article  CAS  Google Scholar 

  • Robinson PA, Rennie CJ, Wright JJ, Bahramali H, Gordon E and Rowe DL (2001). Prediction of EEG spectra from neurophysiology. Phys Rev E 63: 021903

    Article  CAS  Google Scholar 

  • Robinson PA, Rennie CJ and Rowe DL (2002). Dynamics of large-scale brain activity in normal arousal states and epileptic seizures. Phys Rev E 65: 041924

    Article  CAS  Google Scholar 

  • Robinson PA, Rennie CJ, Rowe DL and O’Connor SC (2004). Estimation of multiscale neurophysiologic parameters by electroencephalographic means. Hum Brain Mapp 23: 53–72

    Article  PubMed  CAS  Google Scholar 

  • Robinson PA, Rennie CJ, Rowe DL, Connor SC and Gordon E (2005). Multiscale brain modeling. Phil Trans R Soc B 360: 1043–1050

    Article  PubMed  CAS  Google Scholar 

  • Rowe DL, Robinson PA and Rennie CJ (2004). Estimation of neurophysiological parameters from the waking EEG using a biophysical model of brain dynamics. J Theor Biol 231: 413–433

    Article  PubMed  Google Scholar 

  • Salami M, Itami C, Tsumoto T and Kimura F (2003). Change of conduction velocity by regional myelination yields constant latency irrespective of distance between thalamus and cortex. Proc Nat Acad Sci USA 100: 6174–6179

    Article  PubMed  CAS  Google Scholar 

  • Schupp HT, Flaisch T, Stockburger J and Junghofer M (2006). Emotion and attention: event-related brain potential studies. Prog Brain Res 156: 31–51

    Article  PubMed  Google Scholar 

  • Sokolov EN, Nezlina NI, Polyanskii VB and Evtikhin DV (2002). The orientating reflex: the ‘targeting reaction’ and ‘searchlight of attention’. Neurosci Behav Physiol 32: 421–437

    Article  Google Scholar 

  • Spruston N, Jonas P and Sakmann B (1995). Dendritic glutamate receptor channels in rat hippocampal CA3 and CA1 pyramidal neurons. J Physiol 482: 325–352

    PubMed  CAS  Google Scholar 

  • Srinivasan R, Nunez PL and Silberstein RB (1998). Spatial filtering and neocortical dynamics: Estimates of EEG coherence. IEEE Trans Biomed Eng B 45: 814–826

    Article  CAS  Google Scholar 

  • Steriade M, Gloor P, Llinás RR, Lopesda Silva FH and Mesulam MM (1990). Basic mechanisms of cerebral rhythmic activities. Electroencephalogr Clin Neurophysiol 76: 481–508

    Article  PubMed  CAS  Google Scholar 

  • Steriade M, McCormick DA and Sejnowski TJ (1993). Thalamocortical oscillations in the sleeping and aroused brain. Science 262: 679–685

    Article  PubMed  CAS  Google Scholar 

  • Turetsky B, Raz J and Fein G (1990). Representation of multi-channel evoked potential data using a dipole component model of intracranial generators: application to the auditory P300. Electroencephalogr Clin Neurophysiol 76: 540–556

    Article  PubMed  CAS  Google Scholar 

  • Wilson HR and Cowan JD (1973). A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Kybernetik 13: 55–80

    Article  PubMed  CAS  Google Scholar 

  • Wood CC (1982). Application of dipole localization methods to source identification of human evoked potentials. Ann N Y Acad Sci 388: 139–155

    Article  PubMed  CAS  Google Scholar 

  • Wright JJ and Liley DTJ (1996). Dynamics of the brain at global and microscopic scales: neural networks and the EEG. Behav Brain Sci 19: 285–294

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. C. Kerr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kerr, C.C., Rennie, C.J. & Robinson, P.A. Physiology-based modeling of cortical auditory evoked potentials. Biol Cybern 98, 171–184 (2008). https://doi.org/10.1007/s00422-007-0201-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-007-0201-1

Keywords

Navigation