A comparison of resonance tuning with positive versus negative sensory feedback | Biological Cybernetics Skip to main content
Log in

A comparison of resonance tuning with positive versus negative sensory feedback

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

We used a computational model of rhythmic movement to analyze how the connectivity of sensory feedback affects the tuning of a closed-loop neuromechanical system to the mechanical resonant frequency (ωr). Our model includes a Matsuoka half-center oscillator for a central pattern generator (CPG) and a linear, one-degree-of-freedom system for a mechanical component. Using both an open-loop frequency response analysis and closed-loop simulations, we compared resonance tuning with four different feedback configurations as the mechanical resonant frequency, feedback gain, and mechanical damping varied. The feedback configurations consisted of two negative and two positive feedback connectivity schemes. We found that with negative feedback, resonance tuning predominantly occurred when ωr was higher than the CPG’s endogenous frequency (ωCPG). In contrast, with the two positive feedback configurations, resonance tuning only occurred if ωr was lower than ωCPG. Moreover, the differences in resonance tuning between the two positive (negative) feedback configurations increased with increasing feedback gain and with decreasing mechanical damping. Our results indicate that resonance tuning can be achieved with positive feedback. Furthermore, we have shown that the feedback configuration affects the parameter space over which the endogenous frequency of the CPG or resonant frequency the mechanical dynamics dominates the frequency of a rhythmic movement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abe M, Yamada N (2003) Modulation of elbow joint stiffness in a vertical plane during cyclic movement at lower or higher frequencies than natural frequency. Exp Brain Res 153(3):394–399

    Article  PubMed  Google Scholar 

  • Ahlborn B, Blake R, Megill W (2006) Frequency tuning in animal locomotion. Zoology (Jena) 109(1):43–53

    Google Scholar 

  • Bennett D, Hollerback J, Xu Y, Hunter I (1992) Time-varying stiffness of human elbow joint during cyclic voluntary movement. Exp Brain Res 88(2):433–442

    Article  CAS  PubMed  Google Scholar 

  • Brown T (1914) On the nature of the fundamental activity of the nervous centres; together with an analysis of rhythmic activity in progression, and a theory of the evolution of function in the nervous system. J Physiol 48:18–46

    CAS  PubMed  Google Scholar 

  • Delcomyn F (1980) Neural basis of rhythmic behavior in animals. Science 210(4469):492–498

    Article  CAS  PubMed  Google Scholar 

  • Demont M (1990) Tuned oscillations in the swimming scallop pecten-maximus. Can J Zool 68(4):786–791

    Article  Google Scholar 

  • Demont M, Gosline J (1988) Mechanics of jet propulsion in the hydromedusan jellyfish, polyorchis pexicillatus: III. a natural resonating bell; the presence and importance of a resonant phenomenon in the locomotor structure. J Exp Biol 134(1):347–361

    Google Scholar 

  • DiPrisco G, Wallen P, Grillner S (1990) Synaptic effects of intraspinal stretch receptor neurons mediating movement-related feedback during locomotion. Brain Res 530(1):161–166

    Article  CAS  Google Scholar 

  • Elson R, Sillar K, Bush B (1992) Identified proprioceptive afferents and motor rhythm entrainment in the crayfish walking system. J Neurophysiol 67(3):530–546

    CAS  PubMed  Google Scholar 

  • Fanson J, Caughey T (1990) Positive position feedback control for large space structures. AIAA J 28(4):717–724

    Article  Google Scholar 

  • Friesen W (1994) Reciprocal inhibition: a mechanism underlying oscillatory animal movements. Neurosci Biobehav Rev 7(4):547–553

    Google Scholar 

  • Friswell M, Inman D (1999) The relationship between positive position feedback and output feedback controllers. Smart Mater Struct 8(3):285–291

    Article  Google Scholar 

  • Garcia M, Kuo A, Peattie A, Wang P, Full R (2000) Damping and size: insights and biological inspiration. In: The international symposium on adaptive motion of animals and machines, Montreal, Canada

  • Goh C, Caughey T (1985) On the stability problem caused by finite actuator dynamics in the collocated control of large space structures. J Control 41(3):787–802

    Article  Google Scholar 

  • Goodman L, Riley M, Mitra S, Turvey M (2000) Advantages of rhythmic movements at resonance: Minimal active degrees of freedom, minimal noise, and maximal predictability. J Motor Behav 32(1):3–8

    Article  CAS  Google Scholar 

  • Guan L, Kiemel T, Cohen A (2001) Impact of movement and movement-related feedback on the lamprey central pattern generator for locomotion. J Exp Biol 204(Pt13):2361–2370

    CAS  PubMed  Google Scholar 

  • Halaki M, O’Kwyer N, Cathers I (2006) Systematic nonlinear relations between displacement amplitude and joint mechanics at the human wrist. J Biomech 39(12):2171–2182

    Article  PubMed  Google Scholar 

  • Hatsopoulos N (1996) Coupling the neural and physical dynamics in rhythmic movements. Neural Comput 8(3):567–581

    Article  CAS  PubMed  Google Scholar 

  • Hatsopoulos N, Warren W (1996) Resonance tuning in rhythmic arm movements. J Motor Behav 28(1):3–14

    Article  Google Scholar 

  • Holt K, Hamill J, Andres R (1990) The force-driven harmonic oscillator as a model for human locomotion. Hum Movement Sci 9:55–68

    Article  Google Scholar 

  • Holt K, Jeng S, Ratcliffe R, Hamill J (1995) Energetic cost and stability during human walking at the preferred stride velocity. J Motor Behav 27(2):164–178

    Article  Google Scholar 

  • Iwasaki T, Zheng M (2006) Sensory feedback mechanism underlying entrainment of central pattern generator to mechanical resonance. Biol Cybern 94(4):245–261

    Article  CAS  PubMed  Google Scholar 

  • Jeng S, Liao H, Lai J, Hou J (1997) Optimization of walking in children. Med Scie Sports Exercise 29(3):370–376

    CAS  Google Scholar 

  • Jezzini S, Hill A, Kuzyk P, Calabrese R (2004) Detailed model of intersegmental coordination in the timing network of the leech heartbeat central pattern generator. J Neurophysiol 91(2):958–977

    Article  PubMed  Google Scholar 

  • Konczak J, Brommann K, Kalveram K (1999) Identification of time-varying stiffness, damping, and equilibrium position in human forearm movements. Motor Control 3(4):394–413

    CAS  PubMed  Google Scholar 

  • Kriellaars D, Brownstone R, Noga B, Jordan l (1994) Mechanical entrainment of fictive locomotion in the decerebrate cat. J Neurophysiol 71(6):2074–2086

    CAS  PubMed  Google Scholar 

  • Lam T, Pearson K (2002) The role of proprioceptive feedback in the regulation and adaptation of locomotor activity. Adv Expe Medi Biol 508:343–355

    Google Scholar 

  • Long J, Nipper K (1996) The importance of body stiffness in undulatory propulsion. Am Zool 36(6):678–694

    Google Scholar 

  • MacKay-Lyons M (2002) Central pattern generation of locomotion: a review of the evidence. Phys Therapy 82(1):69–83

    Google Scholar 

  • Maltenfort M, Burke R (2003) Spindle model responsive to mixed fusimotor inputs and testable predictions of beta feedback effects. J Neurophysiol 89(5):3797–2809

    Article  Google Scholar 

  • Marder E, Bucher D (2001) Central pattern generators and the control of rhythmic movements. Curr Biol 11(23):R986–R996

    Article  CAS  PubMed  Google Scholar 

  • Matsuoka K (1985) Sustained oscillations generated by mutually inhibiting neurons with adaptation. Biol Cybern 52(6):367–376

    Article  CAS  PubMed  Google Scholar 

  • Matsuoka K (1987) Mechanisms of frequency and pattern control in the neural rhythm generators. Biol Cybern 56(5–6):345–353

    Article  CAS  PubMed  Google Scholar 

  • McClellan A, Sigvardt K (1988) Features of entrainment of spinal pattern generators for locomotor activity in the lamprey spinal cord. J Neurosci 8(1):133–145

    CAS  PubMed  Google Scholar 

  • Menard A, Leblond H, Gossard J (1999) The modulation of presynaptic inhibition in single muscle primary afferents during fictive locomotion in the cat. J Neurosci 19(1):391–400

    CAS  PubMed  Google Scholar 

  • Obusek J, Holt K, Rosenstein R (1995) The hybrid mass-spring pendulum model of human leg swinging: stiffness in the control of cycle period. Biol Cybern 73(2):139–147

    Article  CAS  PubMed  Google Scholar 

  • Oppenheim A, Willsky A (1997) Signals and systems. Prentice Hall, New Jersey

    Google Scholar 

  • Pabst D (1996) Springs in swimming animals. Am Zool 36(6):723–735

    Google Scholar 

  • Pandy M (2001) Computer modeling and simulation of human movement. Ann Rev Biomed Eng 3:245–273

    Article  CAS  Google Scholar 

  • Pepin A, Ladouceur M, Barbeau H (2003a) Treadmill walking in incomplete spinal-cord-injured subjects: 1. Adaptation to changes in speed. Spinal Cord 41(5):257–270

    CAS  Google Scholar 

  • Pepin A, Ladouceur M, Barbeau H (2003b) Treadmill walking in incomplete spinal-cord-injured subjects: 2. Factors limiting the maximal speed. Spinal Cord 41(5):271–279

    Article  CAS  PubMed  Google Scholar 

  • Prochazka A, Gillard D, Bennett D (1997) Implications of positive feedback in the control of movement. J Neurophysiol 77(6):3237–3251

    CAS  PubMed  Google Scholar 

  • Raney D, Slominski E (2004) Mechanization and control concepts for biologically inspired micro air vehicles. J Aircraft 41(6):1257–1265

    Article  Google Scholar 

  • Skorupski P, Sillar K (1986) Phase-dependent reversal of reflexes mediated by the thoracocoxal muscle receptor organ in the crayfish, pacifastacus leniusculus. J Neurophysiol 55(4):689–695

    CAS  PubMed  Google Scholar 

  • Slotine JJ, Li W (1991) Applied nonlinear control. Prentice Hall, New Jersey

    Google Scholar 

  • Verdaasdonk B, Koopman H, Helm F (2006) Energy efficient and robust rhythmic limb movement by central pattern generators. Neural Netw 19(4):388–400

    Article  CAS  PubMed  Google Scholar 

  • Vinay L, Barthe J, Grillner S (1996) Central modulation of stretch receptor neurons during fictive locomotion in lamprey. J Neurophysiol 76(2):1224–1235

    CAS  PubMed  Google Scholar 

  • Wallen P, Ekeberg O, Lansner A, Brodin L, Traven H, Grillner S (1992) A computer-based model for realistic simulations of neural networks. II. The segmental network generating locomotor rhythmicity in the lamprey. J Neurophysiol 68(6):1939–1950

    CAS  PubMed  Google Scholar 

  • Williamson M (1998) Neural control of rhythmic arm movements. Neural Netw 11(7):1379–1394

    Article  PubMed  Google Scholar 

  • Winters J, Stark L (1987) Muscle models: what is gained and what is lost by varying model complexity. Biol Cybern 55(6):403–420

    Article  CAS  PubMed  Google Scholar 

  • Zehr E, Duysens J (2004) Regulation of arm and leg movement during human locomotion. Neuroscientist 10(4):347–361

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen P. DeWeerth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Williams, C.A., DeWeerth, S.P. A comparison of resonance tuning with positive versus negative sensory feedback. Biol Cybern 96, 603–614 (2007). https://doi.org/10.1007/s00422-007-0150-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-007-0150-8

Keywords

Navigation