Optimal Multiply Constant-weight Codes from Generalized Howell Designs | Graphs and Combinatorics
Skip to main content

Optimal Multiply Constant-weight Codes from Generalized Howell Designs

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

Constructions for optimal multiply constant-weight codes (MCWCs) with total weight 5 and distance 8 are studied. The equivalence between a special class of MCWCs and generalized Howell designs (GHDs) is established. The existences of GHD\(\big (\frac{3n-3}{2},3n\big )\)s and GHD\(\big (\frac{3n-5}{2},3n\big )\)s are discussed. As corollaries, a large number of optimal MCWCs are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abel, R.J.R., Bailey, R.F., Burgess, A.C., Danziger, P., Mendelsohn, E.: On generalized Howell designs with block size three. Des. Codes Cryptogr. 81, 365–391 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  2. Abel, R.J.R., Chan, N., Colbourn, C.J., Lamken, E.R., Wang, C., Wang, J.: Doubly resolvable nearly Kirkman triple systems. J. Combin. Des. 21, 342–358 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Abel, R.J.R., Colbourn, C.J., Dinitz, J.H.: Mutually orthogonal latin aquares. In: Colbourn, C.J., Dinitz, J.H. (eds.) CRC Handbook of Combinatorial Designs, 2nd edn, pp. 160–193. CRC Press, Boca Raton (2007)

    Google Scholar 

  4. Abel, R.J.R., Lamken, E.R., Wang, J.: A few more Kirkman squares and doubly near resolvable BIBDs with block size 3. Discrete Math. 308, 1102–1123 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Agrell, E., Vardy, A., Zeger, K.: Upper bounds for constant-weight codes. IEEE Trans. Inf. Theory 46, 2373–2395 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Anderson, B.A., Gross, K.B.: Starter-adder methods in the construction of Howell designs. J. Austral. Math. Soc. A 24, 375–384 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  7. Anderson, B.A., Schellenberg, P.J., Stinson, D.R.: The existence of Howell designs of even side. J. Combin. Theory Ser. A 36, 23–55 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bailey, R.F., Burgess, A.C.: Generalized packing designs. Discrete Math. 313, 1167–1190 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bennett, F.E., Colbourn, C.J., Zhu, L.: Existence of three HMOLS of types \(h^n\) and \(2^n 3^1\). Discrete Math. 160, 49–65 (1996)

    Article  MathSciNet  Google Scholar 

  10. Chee, Y.M., Cherif, Z., Danger, J.-L., Guilley, S., Kiah, H.M., Kim, J.-L., Solé, P., Zhang, X.: Multiply constant-weight codes and the reliability of loop physically unclonable functions. IEEE Trans. Inf. Theory 60, 7026–7034 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cherif, Z., Danger, J.-L., Guilley, S., Bossuet, L.: An easy-to-design PUF based on a single oscillator: the loop PUF. In: Proceedings of the 15th Euromicro Conference on Digital Systems Design, Sept, pp. 156–162 (2012)

  12. Cherif, Z., Danger, J.-L., Guilley, S., Kim, J.-L., Solé, P.: Multiply constant weight codes. In: Proceedings of the IEEE International Symposium on Information Theory, July, pp. 306–310 (2013)

  13. Chee, Y.M., Kiah, H.M., Zhang, H., Zhang, X.: Constructions of optimal and near optimal multiply constant-weight codes. IEEE Trans. Inf. Theory 63, 3621–3629 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. Colbourn, C.J., Lamken, E.R., Ling, A.C.H., Mills, W.H.: The existence of Kirkman squares-doubly resolvable \((v,3,1)\)-BIBDs. Des. Codes Cryptogr. 26, 169–196 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Du, J., Abel, R.J.R., Wang, J.: Some new resolvable GDDs with \(k=4\) and doubly resolvable GDDs with \(k=3\). Discrete Math. 338, 2105–2118 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dinitz, J.H., Lamken, E.R.: Howell designs with sub-designs. J. Combin. Theory Ser. A 65, 268–301 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dinitz, J.H., Stinson, D.R.: Room squares and related designs. In: Dinitz, J.H., Stinson, D.R. (eds.) Contemporary Design Theory: A Collection of Surveys, pp. 137–204. Wiley, New York (1992)

    Google Scholar 

  18. Etzion, T.: Optimal doubly constant weight codes. J. Combin. Des. 16, 137–151 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gassend, B., Clarke, D., van Dijk, M., Devadas, S.: Silicon physical random functions. In: Proceedings of the 9th ACM Conference on Computer and Communications Security, Nov, pp. 148–160 (2002)

  20. Hung, S.H.Y., Mendelsohn, N.S.: On Howell designs. J. Combin. Theory Ser. A 16, 174–198 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ling, A.C.H., Zhu, X.J., Colbourn, C.J., Mullin, R.C.: Pairwise balanced designs with consecutive block sizes. Des. Codes Cryptogr. 10, 203–222 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  22. Pappu, R., Recht, B., Taylor, J., Gershenfeld, N.: Physical one-way functions. Science 297, 2026–2030 (2002)

    Article  Google Scholar 

  23. Rosa, A., Vanstone, S.A.: Starter-adder techniques for Kirkman squares and Kirkman cubes of small sides. Ars Combin. 14, 199–212 (1982)

    MathSciNet  MATH  Google Scholar 

  24. Stinson, D.R.: The existence of Howell designs of odd side. J. Combin. Theory Ser. A 32, 53–65 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  25. Suh, G.E., Devadas, S.: Physical unclonable functions for device authentication and secret key generation. In: Proceedings of the 44th Annual Design Automation Conference, June, pp. 9–14 (2007)

  26. Wang, C., Chang, Y., Feng, T.: The asymptotic existence of frames with a pair of orthogonal frame resolutions. Sci. China Math. (2019). https://doi.org/10.1007/s11425-017-9386-2

  27. Wang, X., Wei, H., Shangguan, C., Ge, G.: New bounds and constructions for multiply constant-weight codes. IEEE Trans. Inf. Theory 62, 6315–6327 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Feng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supported by NSFC under Grant 11431003, 11471032, and Fundamental Research Funds for the Central Universities under Grant 2016JBM071, 2016JBZ012.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Chang, Y. & Feng, T. Optimal Multiply Constant-weight Codes from Generalized Howell Designs. Graphs and Combinatorics 35, 611–632 (2019). https://doi.org/10.1007/s00373-019-02020-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-019-02020-7

Keywords

Mathematics Subject Classification