Cyclic Uniform 2-Factorizations of the Complete Multipartite Graph | Graphs and Combinatorics
Skip to main content

Cyclic Uniform 2-Factorizations of the Complete Multipartite Graph

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

A generalization of the Oberwolfach problem, proposed by Liu (J Comb Des 8:42–49, 2000), asks for a uniform 2-factorization of the complete multipartite graph \(K_{m\times n}\). Here we focus our attention on cyclic 2-factorizations, whose 2-factors are disjoint union of cycles all of even length \(\ell \). In particular, we present a complete solution for the extremal cases \(\ell =4\) and \(\ell =mn\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bryant, D., Danziger, P., Dean, M.: On the Hamiltonian–Waterloo problem for bipartite 2-factors. J. Comb. Des. 21, 60–80 (2013)

    Article  MATH  Google Scholar 

  2. Bryant, D., Danziger, P., Pettersson, W.: Bipartite 2-factorizations of complete multipartite graphs. J. Graph Theory 78, 287–294 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Buratti, M.: Abelian 1-factorizations of the complete graph. Eur. J. Comb. 22, 291–295 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Buratti, M.: Rotational \(k\)-cycle systems of order \(v<3h\); another proof of the existence of odd cycle systems. J. Comb. Des. 11, 433–441 (2003)

    Article  MATH  Google Scholar 

  5. Buratti, M., Del Fra, A.: Cyclic hamiltonian cycle systems of the complete graph. Discret. Math. 279, 107–119 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Buratti, M., Rinaldi, G.: On sharply vertex transitive 2-factorizations of the complete graph. J. Comb. Theory A 111, 245–256 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cavenagh, N., El-Zanati, S., Khodkar, A., Vanden Eynden, C.: On a generalization of the Oberwolfach problem. J. Comb. Theory A 106, 255–275 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. El-Zanati, S., Tipnis, S.K., Vanden Eynden, C.: A generalization of the Oberwolfach problem. J. Graph Theory 41, 151–161 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gvozdjak, P.: On the Oberwolfach problem for complete multigraphs. Discret. Math. 173, 61–69 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  10. Jordon, H., Morris, J.: Cyclic hamiltonian cycle systems of the complete graph minus 1-factor. Discret. Math. 308, 2440–2449 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Liu, J.: A generalization of the Oberwolfach problem and \(C_t\)-factorizations of complete equipartite graphs. J. Comb. Des. 8, 42–49 (2000)

    Article  MATH  Google Scholar 

  12. Liu, J.: The equipartite Oberwolfach problem with uniform tables. J. Comb. Theory A 101, 20–34 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Liu, J., Lick, D.R.: On \(\lambda \)-fold equipartite Oberwolfach problem with uniform table sizes. Ann. Comb. 7, 315–323 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Mazzuoccolo, G.: Primitive 2-factorizations of the complete graph. Discret. Math. 308, 175–179 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Merola, F., Pasotti, A., Pellegrini, M.A.: Cyclic and symmetric hamiltonian cycle systems of the complete multipartite graph: even number of parts. ARS Math. Contemp. 12, 219–233 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ollis, M.A., Preece, D.A.: Sectionable terraces and the (generalised) Oberwolfach problem. Discret. Math. 266, 399–416 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  17. Pasotti, A., Pellegrini, M.A.: Symmetric 1-factorizations of the complete graph. Eur. J. Comb. 31, 1410–1418 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Piotrowski, W.: The solution of the bipartite analogue of the Oberwolfach problem. Discret. Math. 97, 339–356 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  19. Rinaldi, G.: Nilpotent 1-factorizations of the complete graph. J. Comb. Des. 13, 393–405 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Traetta, T.: A complete solution to the two-table Oberwolfach problems. J. Comb. Theory Ser. A 120, 984–997 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Francesca Merola for the interesting discussions and for her suggestions about the hamiltonian case.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Antonio Pellegrini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pasotti, A., Pellegrini, M.A. Cyclic Uniform 2-Factorizations of the Complete Multipartite Graph. Graphs and Combinatorics 34, 901–930 (2018). https://doi.org/10.1007/s00373-018-1920-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-018-1920-x

Keywords