Abstract
If \(G\) is a claw-free Hamiltonian graph of order \(n\) and maximum degree \(\Delta \) with \(\Delta \ge 24\), then \(G\) has cycles of at least \(\min \left\{ n,\left\lceil \frac{3}{2}\Delta \right\rceil \right\} -2\) many different lengths.
Similar content being viewed by others
References
Broersma, H.J., Ryjáček, Z., Schiermeyer, I.: Dirac’s minimum degree condition restricted to claws. Discret. Math. 167–168, 155–166 (1997)
Chen, B., Zhang, S., Qiao, S.: Hamilton cycles in claw-heavy graphs. Discret. Math. 309, 2015–2019 (2009)
Chvátal, V., Erdős, P.: A note on Hamiltonian circuits. Discret. Math. 2, 111–113 (1972)
Faudree, R., Flandrin, E., Ryjáček, Z.: Claw-free graphs—a survey. Discret. Math. 164, 87–147 (1997)
Ferrara, M., Jacobson, M.S., Harris, A.: Cycle lengths in Hamiltonian graphs with a pair of vertices having large degree sum. Graphs Comb. 26, 215–223 (2010)
Gould, R., Pfender, F.: Pancyclicity in claw-free graphs. Discret. Math. 256, 151–160 (2002)
Hakimi, S.L., Schmeichel, E.F.: A cycle structure theorem for Hamiltonian graphs. J. Comb. Theory Ser. B 45, 99–107 (1988)
Hao, L.: Generalizations of Dirac’s theorem in Hamiltonian graph theory—a survey. Discret. Math. 313, 2034–2053 (2013)
Kouider, M., Marczyk, A.: On pancyclism in Hamiltonian graphs. Discret. Math. 251, 119–127 (2002)
Marczyk, A., Woźniak, M.: Cycles in Hamiltonian graphs of prescribed maximum degree. Discret. Math. 266, 321–326 (2003)
Marczyk, A.: On the set of cycle lengths in a Hamiltonian graph with a given maximum degree. Graphs Comb. 20, 517–529 (2004)
Müttel, J., Rautenbach, D., Regen, F., Sasse, T.: On the cycle spectrum of cubic Hamiltonian graphs. Graphs Comb. 29, 1067–1076 (2013)
Shi, R.: \(2\)-Neighborhoods and Hamiltonian conditions. J. Graph Theory 16, 267–271 (1992)
Trommel, H., Veldman, H.J., Verschut, A.: Pancyclicity of claw-free Hamiltonian graphs. Discret. Math. 197–198, 781–789 (1999)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Eckert, J., Joos, F. & Rautenbach, D. The Cycle Spectrum of Claw-free Hamiltonian Graphs. Graphs and Combinatorics 32, 93–101 (2016). https://doi.org/10.1007/s00373-015-1530-9
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00373-015-1530-9