Abstract
We define the Helly number of a polyomino P as the smallest number h such that the h-Helly property holds for the family of symmetric and translated copies of P on the integer grid. We prove the following: (i) the only polyominoes with Helly number 2 are the rectangles, (ii) there does not exist any polyomino with Helly number 3, (iii) there exist polyominoes of Helly number k for any k ≠ 1, 3.
Similar content being viewed by others
References
Bárány I., Matousek J.: A fractional Helly theorem for convex lattice sets. Adv. Math. 174(2), 227–235 (2003)
Barbosa R.M., Coelho E.M.M., Dourado M.C., Szwarcfiter J.L.: The colorful helly theorem and general hypergraphs. Eur. J. Comb. 33(5), 743–749 (2012)
Beck J.: Combinatorial games: Tic–Tac–Toe theory. Encyclopedia of mathematics and its applications. Cambridge University Press, Cambridge (2008)
Berge, C.: Graphs and hypergraphs. North-Holland, Amsterdam, New York ([rev. ed.] translated by edward minieka. edition) (1973)
Cardinal J., Collette S., Ito H., Sakaidani H., Korman M., Langerman Taslakian P.: Cannibal animal games: a new variant of tic-tac-toe. In: Proceedings of the 27th European Workshop on Computational Geometry, pp. 131–134 (2011)
Doignon J.P.: Convexity in crystallographic lattices. J. Geom. 3, 71–85 (1973)
Dourado M.C., Protti F., Szwarcfiter J.L.: Computational aspects of the helly property: a survey. J. Brazil. Comput. Soc. 12(1), 7–33 (2006)
Golomb S.W.: Polyominoes: Puzzles, Patterns, Problems, and Packings, 2nd edn. Princeton University Press, New Jersey (1996)
Golumbic M.C., Jamison R.E.: The edge intersection graphs of paths in a tree. J. Comb. Theory Ser. B 38(1), 8–22 (1985)
Golumbic M.C., Lipshteyn M., Stern M.: Edge intersection graphs of single bend paths on a grid. Networks 54(3), 130–138 (2009)
Goodman, J.E., O’Rourke, J. (eds.): Handbook of Discrete and Computational Geometry. CRC Press, Boca Raton (2004)
Graham, R.L., Grötschel, M., Lovász, L. (eds.): Handbook of combinatorics, vol. 1. MIT Press, Cambridge (1995)
Hugh D., Hugh D.: Counting polyominoes: yet another attack. Discrete Math. 36(3), 191–203 (1981)
Morishita, T.: Constructing a program for enumerating the helly number of polyominoes. Unpublished manuscript (in japanese) (2011). Available at: http://llati.upc.es/mkorman/papers/cpehnp.pdf.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Cardinal, J., Ito, H., Korman, M. et al. Helly Numbers of Polyominoes. Graphs and Combinatorics 29, 1221–1234 (2013). https://doi.org/10.1007/s00373-012-1203-x
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00373-012-1203-x