Abstract
Given a polytope \({{\mathcal{P}}}\) of rank 2n, the faces of middle ranks n − 1 and n constitute the vertices of a bipartite graph, the medial layer graph \({{M(\mathcal{P})}}\) of \({{\mathcal{P}}}\). The group \({{D(\mathcal{P})}}\) of automorphisms and dualities of \({{\mathcal{P}}}\) has a natural action on this graph. We prove algebraic and combinatorial conditions on \({{\mathcal{P}}}\) that ensure this action is transitive on k-arcs in \({{M(\mathcal{P})}}\) for some small k (in particular focussing on k = 3), and provide examples of families of polytopes that satisfy these conditions. We also examine how \({{D(\mathcal{P})}}\) acts on the k-stars based at vertices of \({{M(\mathcal{P})},}\) and describe self-dual regular polytopes (in particular those of rank 6) for which this action is transitive on the k-stars for small k.
Similar content being viewed by others
References
Biggs N.: Algebraic Graph Theory, 2nd ed. Cambridge Mathematical Library, Cambridge University Press, Cambridge (1993)
Bouwer, I.Z. (ed.): The Foster Census. Charles Babbage Research Centre, Winnipeg (1988)
Conder M., Lorimer P.: Automorphism groups of symmetric graphs of valency 3. J. Combin. Theory. Ser. B. 47, 60–72 (1989)
Conder M., Dobcsanyi P.: Trivalent symmetric graphs on up to 768 vertices. J. Combin. Math. Combin. Comput. 40, 41–63 (2002)
Conder M., Malnič A., Marušič D., Potočnik P.: A census of semisymmetric cubic graphs on up to 768 vertices. J. Algebr. Combin. 23, 255–294 (2006)
Coxeter H.S.M.: The edges and faces of a 4-dimensional polytope. Congr. Num. 28, 309–334 (1980)
Coxeter H.S.M., Moser W.O.J.: Generators and Relations for Discrete Groups, 4th ed. Springer, New York (1980)
Coxeter H.S.M., Weiss A.I.: Twisted honeycombs {3, 5, 3} t and their groups. Geom. Dedicata 17, 169–179 (1984)
Danzer L., Schulte E.: Reguläre Inzidenzkomplexe. Geom. Dedicata 13, 295–308 (1982)
Hartley M.I.: An exploration of locally projective polytopes. Combinatorica 28, 299–314 (2008)
Hartley M.I., Leemans D.: Quotients of a locally projective polytope of type {5, 3, 5}. Math. Z. 247, 66–674 (2004)
Hubard I., Weiss A.I.: Self-duality of chiral polytopes. J. Combin. Theory. Ser. A. 111, 128–136 (2005)
Kimmerle W., Kouzoudi E.: Doubly transitive automorphism groups of combinatorial surfaces. Discret. Comput. Geom. 29, 445–457 (2003)
Marušič D., Pisanski T., Wilson S.: The genus of the Gray graph is 7. Eur. J. Combin. 26, 377–385 (2005)
McMullen P., Schulte E.: Higher toroidal regular polytopes. Adv. Math. 117, 17–51 (1996)
McMullen P., Schulte E.: Abstract Regular Polytopes. Encyclopedia of Mathematics and its Applications, vol. 92. Cambridge University Press, Cambridge (2002)
Mixer, M.: Transitivity of graphs associated with highly symmetric polytopes. Ph.D. Thesis, Northeastern University, Boston (2010)
Monson B., Schulte E.: Reflection groups and polytopes over finite fields. Adv. Appl. Math. 38, 327–356 (2007)
Monson B., Schulte E.: Reflection groups and polytopes over finite fields, III. Adv. Appl. Math. 41, 76–94 (2008)
Monson B., Schulte E.: Locally toroidal polytopes and modular linear groups. Discret. Math. 310, 1759–1771 (2010)
Monson, B., Ivić Weiss, A.: Polytopes, honeycombs, groups and graphs. In: Davis, C., Ellers, E.,(eds.) The Coxeter Legacy—Reflections and Projections. Fields Institute Communications, vol. 46. Am. Math. Soc., Providence, pp. 107–120 (2006)
Monson B., Ivić Weiss A.: Medial layer graphs of equivelar 4-polytopes. Eur. J. Combin. 28, 43–60 (2007)
Monson B., Pisanski T., Schulte E., Ivić Weiss A.: Semisymmetric graphs from polytopes. J. Combin. Theory. A. 114, 421–435 (2007)
Schulte E.: Reguläre Inzidenzkomplexe, II. Geom. Dedicata 14, 33–56 (1983)
Schulte E., Ivić Weiss A.: Problems on polytopes, their groups, and realizations. Period. Math. Hung. 53, 1–25 (2006)
Širáň, J., Tucker, T.W.: Symmetric maps. In: Topics in Topological Graph Theory, Encyclopedia Math. Appl., vol. 128. Cambridge University Press, Cambridge, pp. 199–224 (2009)
Tutte, W.T.: Connectivity in Graphs. Mathematical Expositions. No. 15. University of Toronto Press, Toronto (1966)
Weiss, R.: s-Transitive graphs. In: Algebraic Methods in Graph Theory. vols. I, II (Szeged 1978), pp. 827–847 (1981)
Author information
Authors and Affiliations
Corresponding author
Additional information
E. Schulte is Supported by NSF-Grant DMS–0856675.
Rights and permissions
About this article
Cite this article
Mixer, M., Schulte, E. Symmetric Graphs from Polytopes of High Rank. Graphs and Combinatorics 28, 843–857 (2012). https://doi.org/10.1007/s00373-011-1089-z
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00373-011-1089-z