Symmetric Graphs from Polytopes of High Rank | Graphs and Combinatorics Skip to main content
Log in

Symmetric Graphs from Polytopes of High Rank

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

Given a polytope \({{\mathcal{P}}}\) of rank 2n, the faces of middle ranks n − 1 and n constitute the vertices of a bipartite graph, the medial layer graph \({{M(\mathcal{P})}}\) of \({{\mathcal{P}}}\). The group \({{D(\mathcal{P})}}\) of automorphisms and dualities of \({{\mathcal{P}}}\) has a natural action on this graph. We prove algebraic and combinatorial conditions on \({{\mathcal{P}}}\) that ensure this action is transitive on k-arcs in \({{M(\mathcal{P})}}\) for some small k (in particular focussing on k = 3), and provide examples of families of polytopes that satisfy these conditions. We also examine how \({{D(\mathcal{P})}}\) acts on the k-stars based at vertices of \({{M(\mathcal{P})},}\) and describe self-dual regular polytopes (in particular those of rank 6) for which this action is transitive on the k-stars for small k.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Biggs N.: Algebraic Graph Theory, 2nd ed. Cambridge Mathematical Library, Cambridge University Press, Cambridge (1993)

    Google Scholar 

  2. Bouwer, I.Z. (ed.): The Foster Census. Charles Babbage Research Centre, Winnipeg (1988)

  3. Conder M., Lorimer P.: Automorphism groups of symmetric graphs of valency 3. J. Combin. Theory. Ser. B. 47, 60–72 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  4. Conder M., Dobcsanyi P.: Trivalent symmetric graphs on up to 768 vertices. J. Combin. Math. Combin. Comput. 40, 41–63 (2002)

    MathSciNet  MATH  Google Scholar 

  5. Conder M., Malnič A., Marušič D., Potočnik P.: A census of semisymmetric cubic graphs on up to 768 vertices. J. Algebr. Combin. 23, 255–294 (2006)

    Article  MATH  Google Scholar 

  6. Coxeter H.S.M.: The edges and faces of a 4-dimensional polytope. Congr. Num. 28, 309–334 (1980)

    MathSciNet  Google Scholar 

  7. Coxeter H.S.M., Moser W.O.J.: Generators and Relations for Discrete Groups, 4th ed. Springer, New York (1980)

    Google Scholar 

  8. Coxeter H.S.M., Weiss A.I.: Twisted honeycombs {3, 5, 3} t and their groups. Geom. Dedicata 17, 169–179 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  9. Danzer L., Schulte E.: Reguläre Inzidenzkomplexe. Geom. Dedicata 13, 295–308 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hartley M.I.: An exploration of locally projective polytopes. Combinatorica 28, 299–314 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hartley M.I., Leemans D.: Quotients of a locally projective polytope of type {5, 3, 5}. Math. Z. 247, 66–674 (2004)

    Article  MathSciNet  Google Scholar 

  12. Hubard I., Weiss A.I.: Self-duality of chiral polytopes. J. Combin. Theory. Ser. A. 111, 128–136 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kimmerle W., Kouzoudi E.: Doubly transitive automorphism groups of combinatorial surfaces. Discret. Comput. Geom. 29, 445–457 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Marušič D., Pisanski T., Wilson S.: The genus of the Gray graph is 7. Eur. J. Combin. 26, 377–385 (2005)

    Article  MATH  Google Scholar 

  15. McMullen P., Schulte E.: Higher toroidal regular polytopes. Adv. Math. 117, 17–51 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  16. McMullen P., Schulte E.: Abstract Regular Polytopes. Encyclopedia of Mathematics and its Applications, vol. 92. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  17. Mixer, M.: Transitivity of graphs associated with highly symmetric polytopes. Ph.D. Thesis, Northeastern University, Boston (2010)

  18. Monson B., Schulte E.: Reflection groups and polytopes over finite fields. Adv. Appl. Math. 38, 327–356 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Monson B., Schulte E.: Reflection groups and polytopes over finite fields, III. Adv. Appl. Math. 41, 76–94 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Monson B., Schulte E.: Locally toroidal polytopes and modular linear groups. Discret. Math. 310, 1759–1771 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Monson, B., Ivić Weiss, A.: Polytopes, honeycombs, groups and graphs. In: Davis, C., Ellers, E.,(eds.) The Coxeter Legacy—Reflections and Projections. Fields Institute Communications, vol. 46. Am. Math. Soc., Providence, pp. 107–120 (2006)

  22. Monson B., Ivić Weiss A.: Medial layer graphs of equivelar 4-polytopes. Eur. J. Combin. 28, 43–60 (2007)

    Article  MATH  Google Scholar 

  23. Monson B., Pisanski T., Schulte E., Ivić Weiss A.: Semisymmetric graphs from polytopes. J. Combin. Theory. A. 114, 421–435 (2007)

    Article  MATH  Google Scholar 

  24. Schulte E.: Reguläre Inzidenzkomplexe, II. Geom. Dedicata 14, 33–56 (1983)

    MathSciNet  MATH  Google Scholar 

  25. Schulte E., Ivić Weiss A.: Problems on polytopes, their groups, and realizations. Period. Math. Hung. 53, 1–25 (2006)

    Article  Google Scholar 

  26. Širáň, J., Tucker, T.W.: Symmetric maps. In: Topics in Topological Graph Theory, Encyclopedia Math. Appl., vol. 128. Cambridge University Press, Cambridge, pp. 199–224 (2009)

  27. Tutte, W.T.: Connectivity in Graphs. Mathematical Expositions. No. 15. University of Toronto Press, Toronto (1966)

  28. Weiss, R.: s-Transitive graphs. In: Algebraic Methods in Graph Theory. vols. I, II (Szeged 1978), pp. 827–847 (1981)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Mixer.

Additional information

E. Schulte is Supported by NSF-Grant DMS–0856675.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mixer, M., Schulte, E. Symmetric Graphs from Polytopes of High Rank. Graphs and Combinatorics 28, 843–857 (2012). https://doi.org/10.1007/s00373-011-1089-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-011-1089-z

Keywords

Navigation