Perfect Matchings in Total Domination Critical Graphs | Graphs and Combinatorics Skip to main content
Log in

Perfect Matchings in Total Domination Critical Graphs

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

A graph is total domination edge-critical if the addition of any edge decreases the total domination number, while a graph with minimum degree at least two is total domination vertex-critical if the removal of any vertex decreases the total domination number. A 3 t EC graph is a total domination edge-critical graph with total domination number 3 and a 3 t VC graph is a total domination vertex-critical graph with total domination number 3. A graph G is factor-critical if Gv has a perfect matching for every vertex v in G. In this paper, we show that every 3 t EC graph of even order has a perfect matching, while every 3 t EC graph of odd order with no cut-vertex is factor-critical. We also show that every 3 t VC graph of even order that is K 1,7-free has a perfect matching, while every 3 t VC graph of odd order that is K 1,6-free is factor-critical. We show that these results are tight in the sense that there exist 3 t VC graphs of even order with no perfect matching that are K 1,8-free and 3 t VC graphs of odd order that are K 1,7-free but not factor-critical.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Caccetta L., Häggkvist R.: On diameter critical graphs. Discret Math. 28(3), 223–229 (1979)

    Article  MATH  Google Scholar 

  2. Cockayne E.J., Dawes R.M., Hedetniemi S.T.: Total domination in graphs. Networks 10, 211–219 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  3. Fan G.: On diameter 2-critical graphs. Discrete Math. 67, 235–240 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  4. Füredi Z.: The maximum number of edges in a minimal graph of diameter 2. J. Graph Theory 16, 81–98 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  5. Goddard W., Haynes T.W., Henning M.A., van der Merwe L.C.: The diameter of total domination vertex critical graphs. Discrete Math. 286, 255–261 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Hanson D., Wang P.: A note on extremal total domination edge critical graphs. Util. Math. 63, 89–96 (2003)

    MathSciNet  MATH  Google Scholar 

  7. Haynes, T.W., Hedetniemi, S.T., Slater, P.J. (eds): Fundamentals of Domination in Graphs. Marcel Dekker, Inc, New York (1998)

    MATH  Google Scholar 

  8. Haynes, T.W., Hedetniemi, S.T., Slater, P.J. (eds): Domination in Graphs: Advanced Topics. Marcel Dekker, Inc, New York (1998)

    MATH  Google Scholar 

  9. Haynes T.W., Henning M.A., van der Merwe L.C.: Domination and total domination critical trees with respect to relative complements. Ars Combin. 59, 117–127 (2001)

    MathSciNet  MATH  Google Scholar 

  10. Haynes T.W., Henning M.A., van der Merwe L.C.: Total domination critical graphs with respect to relative complements. Ars Combin. 64, 169–179 (2002)

    MathSciNet  MATH  Google Scholar 

  11. Haynes, T.W., Henning, M.A., van der Merwe, L.C., Yeo, A.: On a conjecture of Murty and Simon on diameter two critical graphs. Manuscript, July 2009

  12. Haynes, T.W, Henning, M.A., van der Merwe, L.C., Yeo, A.: On the existence of k-partite or K p -free total domination edge-critical graphs. Discrete Math. (to appear)

  13. Henning M.A.: Recent results on total domination in graphs: A survey. Discrete Math. 309, 32–63 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Henning M.A., Rad N.J.: On total domination vertex critical graphs of high connectivity. Discrete Appl. Math. 157, 1969–1973 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Henning M.A., van der Merwe L.C.: Properties of total domination edge-critical graphs. Discrete Appl. Math. 158, 147–153 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Henning M.A., Yeo A.: Hypergraphs with large transversal number and with edge sizes at least three. J. Graph Theory 59, 326–348 (2008)

    MathSciNet  MATH  Google Scholar 

  17. Henning M.A., Yeo A.: Total domination in 2-connected graphs and in graphs with no induced 6-cycles. J. Graph Theory 60, 55–79 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Loizeaux M., van der Merwe L.: A total domination vertex-critical graph of diameter two. Bull. ICA 48, 63–65 (2006)

    MATH  Google Scholar 

  19. Lovász, L., Plummer, M.D.: Matching Theory. North-Holland, Amsterdam (1986)

  20. Murty U.S.R.: On critical graphs of diameter 2. Math. Mag. 41, 138–140 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  21. Shan, E.: Personal communication

  22. Simmons, J.: Closure operations and hamiltonian properties of independent and total domination critical graphs. Ph.D. Thesis. PhD advisor: Gary MacGillvray. University of Victoria (2005)

  23. Sumner D.P., Blitch P.: Domination critical graphs. J. Combin. Theory Ser. B 34, 65–76 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  24. Thomassé S., Yeo A.: Total domination of graphs and small transversals of hypergraphs. Combinatorica 27, 473–487 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Turán P.: Eine Extremalaufgabe aus der Graphentheorie. Mat. Fiz. Lapok 48, 436–452 (1941)

    MathSciNet  MATH  Google Scholar 

  26. Tutte W.T.: A short proof of the factor theorem for finite graphs. Can. J. Math. 6, 347–352 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  27. Tuza Zs.: Hereditary domination in graphs: Characterization with forbidden induced subgraphs. SIAM J. Discrete Math. 22, 349–853 (2008)

    Article  MathSciNet  Google Scholar 

  28. van der Merwe L.C., Haynes T.W., Mynhardt C.M.: Total domination edge critical graphs. Util. Math. 54, 229–240 (1998)

    MathSciNet  MATH  Google Scholar 

  29. van der Merwe L.C., Haynes T.W., Mynhardt C.M.: 3-Domination critical graphs with arbitrary independent domination numbers. Bull. Inst. Combin. Appl 27, 85–88 (1999)

    MathSciNet  MATH  Google Scholar 

  30. van der Merwe L.C., Haynes T.W., Mynhardt C.M.: Total domination edge critical graphs with maximum diameter. Discuss. Math. Graph Theory 21, 187–205 (2001)

    MathSciNet  MATH  Google Scholar 

  31. van der Merwe L.C., Haynes T.W., Mynhardt C.M.: Total domination edge critical graphs with minimum diameter. Ars Combin. 66, 79–96 (2003)

    MathSciNet  MATH  Google Scholar 

  32. van der Merwe, L.C.: Total domination edge critical graphs. Ph.D. Thesis. University of South Africa (1999)

  33. Wang C., Hu Z., Li X.: A constructive characterization of total domination vertex critical graphs. Discrete Math. 309, 991–996 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  34. Wang H., Kang L., Shan E.: Matching properties on total domination vertex critical graphs. Graphs Combin. 25, 851–861 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anders Yeo.

Additional information

Research supported in part by the South African National Research Foundation and by a grant from the Harry Oppenheimer Trust.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Henning, M.A., Yeo, A. Perfect Matchings in Total Domination Critical Graphs. Graphs and Combinatorics 27, 685–701 (2011). https://doi.org/10.1007/s00373-010-1000-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-010-1000-3

Keywords

Mathematics Subject Classification (2000)

Navigation