Comparison of Two Techniques for Proving Nonexistence of Strongly Regular Graphs | Graphs and Combinatorics Skip to main content
Log in

Comparison of Two Techniques for Proving Nonexistence of Strongly Regular Graphs

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

We show that the method of counting closed walks in strongly regular graphs rules out no parameter sets other than those ruled out by the method of counting eigenvalue multiplicities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baer R.: Polarities in finite projective planes. Bull. Am. Math. Soc. 52, 77–93 (1946)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bose R.C.: Strongly regular graphs, partial geometries and partially balanced designs. Pac. J. Math. 13, 389–419 (1963)

    MATH  Google Scholar 

  3. Brouwer A.E., van Lint J.H.: Strongly regular graphs and partial geometries. In: Jackson, D.M., Vanstone, S.A. (eds) Enumeration and Design, pp. 85–122. Academic Press, Toronto (1984)

    Google Scholar 

  4. Cameron P.J.: Strongly regular graphs. In: Beineke, L.W., Wilson, R.J. (eds) Topics in Algebraic Graph Theory, pp. 203–221. Cambridge University Press, Cambridge (2004)

    Chapter  Google Scholar 

  5. Connor W.S., Clatworthy W.H.: Some theorems for partially balanced designs. Ann. Math. Stat. 25, 100–112 (1954)

    Article  MATH  MathSciNet  Google Scholar 

  6. Erdős P., Rényi A., Sós V.T.: On a problem of graph theory. Studia Sci. Math. Hungar. 1, 51–57 (1966)

    MathSciNet  Google Scholar 

  7. Huneke C.: The friendship theorem. Am. Math. Mon. 109, 192–194 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  8. Hoffman A.J., Singleton R.R.: On Moore graphs with diameters 2 and 3. IBM J. Res. Dev. 4, 497–504 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  9. Longyear J.Q., Parsons T.D.: The friendship theorem. Indag. Math. 34, 257–262 (1972)

    MathSciNet  Google Scholar 

  10. Wilf H.S.: The friendship theorem. In: Welsh, D.J.A. (ed.) Combinatorial Mathematics and its Applications, pp. 307–309. Academic Press, London (1971)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vašek Chvátal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chvátal, V. Comparison of Two Techniques for Proving Nonexistence of Strongly Regular Graphs. Graphs and Combinatorics 27, 171–175 (2011). https://doi.org/10.1007/s00373-010-0977-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-010-0977-y

Keywords

Navigation