The k-Restricted Edge Connectivity of Balanced Bipartite Graphs | Graphs and Combinatorics Skip to main content
Log in

The k-Restricted Edge Connectivity of Balanced Bipartite Graphs

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

For a connected graph G = (V, E), an edge set \({S\subset E}\) is called a k-restricted edge cut if GS is disconnected and every component of GS contains at least k vertices. The k-restricted edge connectivity of G, denoted by λ k (G), is defined as the cardinality of a minimum k-restricted edge cut. For two disjoint vertex sets \({U_1,U_2\subset V(G)}\), denote the set of edges of G with one end in U 1 and the other in U 2 by [U 1, U 2]. Define \({\xi_k(G)=\min\{|[U,V(G){\setminus} U]|: U}\) is a vertex subset of order k of G and the subgraph induced by U is connected}. A graph G is said to be λ k -optimal if λ k (G) = ξ k (G). A graph is said to be super-λ k if every minimum k-restricted edge cut is a set of edges incident to a certain connected subgraph of order k. In this paper, we present some degree-sum conditions for balanced bipartite graphs to be λ k -optimal or super-λ k . Moreover, we demonstrate that our results are best possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bondy J.A., Murty U.S.R.: Graph Theory with Applications. Macmillan, New York (1976)

    Google Scholar 

  2. Bonsma P., Ueffing N., Volkmann L.: Edge-cuts leaving components of order at least three. Discrete Math. 256, 431–439 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  3. Dankelmann P., Volkmann L.: New sufficient conditions for equlity of minimum degree and edge-connectivity. Ars Combin. 40, 270–278 (1995)

    MATH  MathSciNet  Google Scholar 

  4. Esfahanian A.H., Hakimi S.L.: On computing a condictional edge-connectivity of a graph. Inform. Process. Lett. 27, 195–199 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  5. Fàbrega J., Fiol M.A.: On the extraconnectivity of graphs. Discrete Math. 155, 49–57 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  6. Hellwig A., Volkmann L.: Sufficient conditions for graphs to be λ′-optimal, super-edge-connected and maximally edge-connected. J. Graph Theory 48, 228–246 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  7. Hellwig A., Volkmann L.: Maximally edge-connected and vertex-connected graphs and digraphs: a survey. Discrete Math. 308, 3265–3296 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  8. Meng J.X., Li Y.H.: On a kind of restricted edge connectivity of graphs. Discrete Appl. Math. 117, 183–193 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  9. Ou J.P.: Edge cuts leaving components of order at least m. Discrete Math. 305, 365–371 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  10. Ou J.P.: A bound on 4-restricted edge connectivity of graphs. Discrete Math. 307, 2429–2437 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  11. Shang L., Zhang H.P.: Sufficient conditions for graphs to be λ′-optimal and super-λ′. Networks 49, 234–242 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  12. Shang L., Zhang H.P.: Degree conditions for graphs to be λ3-optimal and super-λ3. Discrete Math. 309, 3336–3345 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  13. Wang M., Li Q.: Conditional edge connectivity properties, reliability comparisons and transitivity of graphs. Discrete Math. 258, 205–214 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  14. Wang S.Y., Lin S.W., Li C.F.: Sufficient conditions for super k-restricted edge connectivity in graphs of diameter 2. Discrete Math. 309, 908–919 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  15. Yuan J., Liu A.X., Wang S.Y.: Sufficient conditions for bipartite graphs to be super-λ k -restricted edge-connected. Discrete Math. 309, 2886–2896 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  16. Yuan J., Liu A.X.: Sufficient conditions for bipartite graphs to be super-k-restricted edge connected. Discrete Math. 310, 981–987 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  17. Zhang Z., Yuan J.J.: A proof of an inequality concerning k-restricted edge connectivity. Discrete Math. 304, 128–134 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  18. Zhang Z., Yuan J.J.: Degree conditions for restricted-edge-connectivity and isoperimetric-edge-connectivity to be optimal. Discrete Math. 307, 293–298 (2007)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Yuan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuan, J., Liu, A. The k-Restricted Edge Connectivity of Balanced Bipartite Graphs. Graphs and Combinatorics 27, 289–303 (2011). https://doi.org/10.1007/s00373-010-0966-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-010-0966-1

Keywords

Navigation