Multi-view clustering based on graph learning and view diversity learning | The Visual Computer Skip to main content
Log in

Multi-view clustering based on graph learning and view diversity learning

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Multi-view clustering is to make full use of different views of the data for clustering. In recent years, many multi-view clustering methods have been proposed. Previous methods usually do not consider the smooth representation of clusters and the diversity of different views simultaneously. Or they are limited to using the average of graphs as the input to the clustering algorithm, ignoring the possible impact of noisy views. Therefore, we propose a multi-view clustering method based on graph learning and view diversity learning. Specifically, in view self-expression learning, manifold learning is added to mine the structural graph information of data and control the geometry of data distribution. After that, view diversity is added, which is used to explore the complementary information of multi-view data and reduce the redundant information of the data. In addition, we also apply an automatic weighting strategy to distinguish different contributions from different views, and generate a consensus graph from multiple similarity graphs. Our work combines graph learning, view diversity learning, and graph fusion in a unified framework for the first time. An alternating iterative method is used to optimize the solution. Experimental results on six data sets show that our model has good clustering performance on different evaluation indicators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Maria, B., Ivica, K.: Multi-view low-rank sparse subspace clustering. Pattern Recogn. 73, 247–258 (2018). https://doi.org/10.1016/j.patcog.2017.08.024

    Article  Google Scholar 

  2. Huang, Z., Zhou, J.T., Peng, X., Zhang, C., Zhu, H., Lv, J.: Multi-view spectral clustering network. In: IJCAI, pp. 2563–2569 (2019). https://doi.org/10.24963/ijcai.2019/356

  3. Zhang, Z., Liu, L., Shen, F., Shen, H.T., Shao, L.: Binary multi-view clustering. IEEE Trans. Pattern Anal. Mach. Intell. 41(7), 1774–1782 (2018). https://doi.org/10.1007/s10489-022-03205-z

    Article  Google Scholar 

  4. Zhu, P., Qi, H., Hu, H., Zhang, C., Feng, Z.: Multi-view label embedding. Pattern Recogn. 84, 126–135 (2018). https://doi.org/10.1109/access.2021.3106680

    Article  Google Scholar 

  5. Li, Y., Liao, H.: Multi-view clustering via adversarial view embedding and adaptive view fusion. Appl. Intell. 51(3), 1201–1212 (2021). https://doi.org/10.1007/s10489-020-01864-4

    Article  Google Scholar 

  6. Li, R., Zhang, C., Fu, H., Peng, X., Zhou, J.T., Hu, Q.: Reciprocal multi-layer subspace learning for multi-view clustering. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 8172–8180. IEEE (2019). https://doi.org/10.1109/iccv.2019.00826

  7. Houthuys, L., Langone, R., Suykens, J.A.K.: Multi-view kernel spectral clustering. Inf. Fusion 44, 46–56 (2018). https://doi.org/10.1109/ssci.2017.8280861

    Article  Google Scholar 

  8. Du, G., Zhou, L., Yang, Y., Lü, K.: Deep multiple auto-encoder-based multi-view clustering. Data Sci. Eng. 6(3), 323–338 (2021). https://doi.org/10.21437/interspeech.2017-582

  9. Huang, S., Ren, Y., Zenglin, X.: Robust multi-view data clustering with multi-view capped-norm k-means. Neurocomputing 311, 197–208 (2018). https://doi.org/10.1016/j.neucom.2018.05.072

    Article  Google Scholar 

  10. Dai, W., Erdt, M., Sourin, A.: Self-supervised pairing image clustering for automated quality control. Vis. Comput. 38(4), 1181–1194 (2022). https://doi.org/10.1007/s00371-021-02137-y

    Article  Google Scholar 

  11. Nie, F., Cai, G., Li, X.: Multi-view clustering and semi-supervised classification with adaptive neighbours. In: Thirty-first AAAI Conference on Artificial Intelligence (2017). https://doi.org/10.1007/978-3-030-01872-6_2

  12. Yang, Z., Zhang, H., Liang, N., Li, Z., Sun, W.: Semi-supervised multi-view clustering by label relaxation based non-negative matrix factorization. Vis. Comput. 1–14 (2022). https://doi.org/10.1007/s00371-022-02419-z

  13. Wang, S., Zou, Y., Min, W., Jiansheng, W., Xiong, X.: Multi-view face generation via unpaired images. Vis. Comput. 1–16 (2021). https://doi.org/10.1007/s00371-021-02129-y

  14. Huang, S., Xu, Z., Tsang, I.W., Kang, Z.: Auto-weighted multi-view co-clustering with bipartite graphs. Inf. Sci. 512, 18–30 (2020). https://doi.org/10.1016/j.ins.2019.09.079

    Article  MathSciNet  MATH  Google Scholar 

  15. Huang, Y., Xiao, Q., Shiqiang, D., Yao, Y.: Multi-view clustering based on low-rank representation and adaptive graph learning. Neural Process. Lett. 1–19 (2021). https://doi.org/10.1007/s11063-021-10634-3

  16. Nie, F., Li, J., Li, X.: Self-weighted multiview clustering with multiple graphs. In: Proceedings of the 26th International Joint Conference on Artificial Intelligence, pp. 2564–2570 (2017). https://doi.org/10.24963/ijcai.2017/357

  17. Wang, H., Yang, Y., Liu, B.: GMC: graph-based multi-view clustering. IEEE Trans. Knowl. Data Eng. 32(6), 1116–1129 (2019). https://doi.org/10.24963/ijcai.2021/375

    Article  Google Scholar 

  18. Kang, Z., Shi, G., Huang, S., Chen, W., Pu, X., Zhou, J.T., Xu, Z.: Multi-graph fusion for multi-view spectral clustering. Knowl. Based Syst. 189, 105102 (2020). https://doi.org/10.1016/j.inffus.2021.09.009

    Article  Google Scholar 

  19. Cao, X., Zhang, C., Fu, H., Liu, S., Zhang, H.: Diversity-induced multi-view subspace clustering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 586–594 (2015). https://doi.org/10.1109/cvpr.2015.7298657

  20. Luo, S., Zhang, C., Zhang, W., Cao, X.: Consistent and specific multi-view subspace clustering. In: Thirty-second AAAI Conference on Artificial Intelligence, pp. 3730–3737 (2018). https://doi.org/10.1109/ijcnn52387.2021.9534421

  21. Yao, S., Yu, G., Wang, J., Domeniconi, C., Zhang, X.: Multi-view multiple clustering. In: Proceedings of the 28th International Joint Conference on Artificial Intelligence, pp. 4121–4127 (2019). https://doi.org/10.1145/2501006.2501010

  22. Liu, H., Fu, Y.: Consensus guided multi-view clustering. ACM Trans. Knowl. Discov. Data 20(2), 17 (2018). https://doi.org/10.7287/peerj-cs.922v0.2/reviews/2

    Article  Google Scholar 

  23. Li, R., Zhang, C., Hu, Q., Zhu, P., Wang, Z.: Flexible multi-view representation learning for subspace clustering. In: Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence pp. 2916–2922 (2019). https://doi.org/10.24963/ijcai.2019/404

  24. Kumar, A., Rai, P., Daumé, H.: Co-regularized multi-view spectral clustering. In: Proceedings of the 24th International Conference on Neural Information Processing Systems, vol. 24, pp. 1413–1421 (2011). https://doi.org/10.1109/icdmw.2018.00145

  25. Kumar, A., Hal, D.: A co-training approach for multi-view spectral clustering. In: Proceedings of the 28th International Conference on International Conference on Machine Learning, pp. 393–400 (2011). https://doi.org/10.1109/icip.2016.7533119

  26. Zhou, S., Liu, X., Li, M., Zhu, E., Liu, L., Zhang, C., Yin, J.: Multiple kernel clustering with neighbor-kernel subspace segmentation. IEEE Trans. Neural Netw. Learn. Syst. 31(4), 1351–1362 (2019). https://doi.org/10.1109/tnnls.2019.2919900

    Article  MathSciNet  Google Scholar 

  27. Liu, X., Dou, Y., Yin, J., Wang, L., Zhu, E.: Multiple kernel k-means clustering with matrix-induced regularization. In: Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, vol. 30, pp. 1888–1894 (2016). https://doi.org/10.1109/access.2019.2940896

  28. Kang, Z., Peng, C., Cheng, Q., Xu, Z.: Unified spectral clustering with optimal graph. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018). https://doi.org/10.5772/34371

  29. Wang, H., Yang, Y., Liu, B., Fujita, H.: A study of graph-based system for multi-view clustering. Knowl Based Syst 163(1), 1009–1019 (2019). https://doi.org/10.24963/ijcai.2021/375

    Article  Google Scholar 

  30. Zhan, K., Zhang, C., Guan, J., Wang, J.: Graph learning for multiview clustering. IEEE Trans. Cybern. 48(10), 2887–2895 (2018). https://doi.org/10.1007/978-981-13-3029-2_5

    Article  Google Scholar 

  31. Wang, H., Yang, Y., Li, T.: Multi-view clustering via concept factorization with local manifold regularization. In: 2016 IEEE 16th International Conference on Data Mining (ICDM), pp. 1245–1250. IEEE, (2016). https://doi.org/10.1109/icdm.2016.0167

  32. Zhang, X., Gao, H., Li, G., Zhao, J., Huo, J., Yin, J., Liu, Y., Zheng, L.: Multi-view clustering based on graph-regularized nonnegative matrix factorization for object recognition. Inf. Sci. 432, 463–478 (2018). https://doi.org/10.1016/j.ins.2017.11.038

    Article  MathSciNet  MATH  Google Scholar 

  33. Zhang, Y., Yang, Y., Li, T., Fujita, H.: A multitask multiview clustering algorithm in heterogeneous situations based on LLE and LE. Knowl. Based Syst. 163, 776–786 (2019). https://doi.org/10.1016/j.knosys.2018.10.001

    Article  Google Scholar 

  34. Zhang, X., Zhang, X., Liu, H., Liu, X.: Multi-task multi-view clustering. IEEE Trans. Knowl. Data Eng. 28(12), 3324–3338 (2016). https://doi.org/10.1109/icpr48806.2021.9412053

    Article  Google Scholar 

  35. Li, X., Ren, Z., Lei, H., Huang, Y., Sun, Q.: Multiple kernel clustering with pure graph learning scheme. Neurocomputing 424, 215–225 (2021). https://doi.org/10.1016/j.neucom.2020.10.052

    Article  Google Scholar 

  36. Guo, L., Zhang, X., Liu, Z., Xue, X., Wang, Q., Zheng, S.: Robust subspace clustering based on automatic weighted multiple kernel learning. Inf. Sci. 573, 453–474 (2021). https://doi.org/10.1016/j.ins.2021.05.070

    Article  MathSciNet  Google Scholar 

  37. Liang, Y., Huang, D., Wang, C.-D.: Consistency meets inconsistency: a unified graph learning framework for multi-view clustering. In: 2019 IEEE International Conference on Data Mining (ICDM), pp. 1204–1209. IEEE (2019). https://doi.org/10.1109/icdm.2019.00148

  38. Qiu, Y., Hao, P.: Self-supervised deep subspace clustering network for faces in videos. Vis. Comput. 37(8), 2253–2261 (2021). https://doi.org/10.1007/s00371-020-01984-5

    Article  Google Scholar 

  39. Gao, H., Xiao, J., Yin, Y., Liu, T., Shi, J.: A mutually supervised graph attention network for few-shot segmentation: the perspective of fully utilizing limited samples. IEEE Trans. Neural Netw. Learn. Syst. (2022). https://doi.org/10.1109/tnnls.2022.3155486

    Article  Google Scholar 

  40. Nie, F., Li, J., Li, X.: Parameter-free auto-weighted multiple graph learning: a framework for multiview clustering and semi-supervised classification. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, pp. 1881–1887 (2016). https://doi.org/10.24963/ijcai.2018/320

  41. Lin, Z., Kang, Z., Zhang, L., Tian, L.: Multi-view attributed graph clustering. IEEE Trans. on Knowl. Data Eng. (2021). https://doi.org/10.24963/ijcai.2021/3750

  42. Li, Y.-K., Zhang, M.-L., Geng, X.: Multiview consensus graph clustering. IEEE Trans. Image Process. 28(3), 1261–1270 (2019). https://doi.org/10.1109/tip.2018.2877335

    Article  MathSciNet  Google Scholar 

  43. Li, X., Zhang, H., Wang, R., Nie, F.: Multiview clustering: a scalable and parameter-free bipartite graph fusion method. IEEE Trans. Pattern Anal. Mach. Intell. 44(1), 330–344 (2020). https://doi.org/10.1109/TPAMI.2020.3011148

    Article  Google Scholar 

  44. Xia, W., Gao, Q., Wang, Q., Gao, X., Ding, C., Tao, D.: Tensorized bipartite graph learning for multi-view clustering. IEEE Trans. Pattern Anal. Mach. Intell. (2022). https://doi.org/10.1109/TPAMI.2022.3187976

    Article  Google Scholar 

  45. Li, Z., Tang, C., Liu, X., Zheng, X., Yue, G., Zhang, W., Zhu, E.: Consensus graph learning for multi-view clustering. IEEE Trans. Multimed. (2021). https://doi.org/10.1016/j.knosys.2021.107632

    Article  Google Scholar 

  46. Li, J., Yang, B., Yang, W., Sun, C., Jianhua, X.: Subspace-based multi-view fusion for instance-level image retrieval. Vis. Comput. 37(3), 619–633 (2021). https://doi.org/10.1109/robio.2018.8665207

    Article  Google Scholar 

  47. Chen, M., Huang, L., Wang, C., Huang, D.: Multi-view clustering in latent embedding space. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 3513–3520 (2020). https://doi.org/10.1609/aaai.v34i04.5756

  48. Peng, X., Huang, Z., Lv, J., Zhu, H., Zhou, J.T.: COMIC: multi-view clustering without parameter selection. In: International Conference on Machine Learning, pp. 5092–5101. PMLR (2019). https://doi.org/10.21203/rs.3.rs-638723/v1

  49. Tang, C., Zheng, X., Liu, X., Zhang, W., Zhang, J., Xiong, J., Wang, L.: Cross-view locality preserved diversity and consensus learning for multi-view unsupervised feature selection. IEEE Trans. Knowl. Data Eng. (2021). https://doi.org/10.1609/aaai.v33i01.33015101

    Article  Google Scholar 

  50. Zhang, C., Fu, H., Liu, S., Liu, G., Cao, X.: Low-rank tensor constrained multiview subspace clustering. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1582–1590 (2015). https://doi.org/10.1109/iccv.2015.185

  51. Xie, Y., Tao, D., Zhang, W., Liu, Y., Zhang, L., Yanyun, Q.: On unifying multi-view self-representations for clustering by tensor multi-rank minimization. Int. J. Comput. Vis. 126(11), 1157–1179 (2018). https://doi.org/10.1007/s11263-018-1086-2

    Article  MathSciNet  MATH  Google Scholar 

  52. Jianlong, W., Lin, Z., Zha, H.: Essential tensor learning for multi-view spectral clustering. IEEE Trans. Image Process. 28(12), 5910–5922 (2019). https://doi.org/10.1109/TIP.2019.2916740

    Article  MathSciNet  MATH  Google Scholar 

  53. Zhang, C., Hu, Q., Fu, H., Zhu, P., Cao, X.: Latent multi-view subspace clustering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4279–4287 (2017). https://doi.org/10.1109/ijcnn52387.2021.9534298

  54. Zhao, H., Ding, Z., Yun, F.: Multi-view clustering via deep matrix factorization. In: Thirty-First AAAI Conference on Artificial Intelligence, vol. 31, pp. 2921–2927 (2017). https://doi.org/10.1109/icdm.2014.19

  55. Xia, R., Pan, Y., Lei, D., Yin, J.: Robust multi-view spectral clustering via low-rank and sparse decomposition. In: Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence, vol. 28 no. 1, pp. 2149–2155 (2014). https://doi.org/10.1109/igarss.2018.8519284

  56. Yang, Z., Xu, Q., Zhang, W., Cao, X., Huang, Q.: Split multiplicative multi-view subspace clustering. IEEE Trans. Image Process. 28(10), 5147–5160 (2019). https://doi.org/10.23919/ccc52363.2021.9549289

    Article  MathSciNet  MATH  Google Scholar 

  57. Kang, Z., Lin, Z., Zhu, X., Wenbo, X.: Structured graph learning for scalable subspace clustering: from single view to multiview. IEEE Trans. Cybern. (2021). https://doi.org/10.1109/tcyb.2021.3061660

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 62071001), the Anhui Natural Science Foundation of China (Nos. 2008085MF192 and 2008085MF183), the Key Science Project of Anhui Education Department of China (Nos. KJ2018A0012, KJ2019A0023, and KJ2019A0022), and the CERNET Innovation Project of China (Nos. NGII20180612, NGII20180312, and NGII20180624).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Sun.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Sun, D., Yuan, Z. et al. Multi-view clustering based on graph learning and view diversity learning. Vis Comput 39, 6133–6149 (2023). https://doi.org/10.1007/s00371-022-02717-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-022-02717-6

Keywords

Navigation