An intelligent and blind image watermarking scheme based on hybrid SVD transforms using human visual system characteristics | The Visual Computer Skip to main content
Log in

An intelligent and blind image watermarking scheme based on hybrid SVD transforms using human visual system characteristics

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

This paper presents a new intelligent image watermarking scheme based on discrete wavelet transform (DWT) and singular values decomposition (SVD) using human visual system (HVS) and particle swarm optimization (PSO). The cover image is transformed by one-level (DWT) and subsequently the LL sub-band of (DWT) transformed image is chosen for embedding. To achieve the highest possible visual quality, the embedding regions are selected based on (HVS). After applying (SVD) on the selected regions, every two watermark bits are embedded indirectly into the U and \(V^{t}\) components of SVD decomposition of the selected regions, instead of embedding one watermark bit into the U component and compensating on the \(V^{t}\) component that results in twice capacity and reasonable imperceptibility. In addition, for increasing the robustness without losing the transparency, the scaling factors are chosen automatically by (PSO) based on the attacks test results and predefined conditions, instead of using fixed or manually set scaling factors for all different cover images. Experimental and comparative results demonstrated the stability and improved performance of the proposed scheme compared to its parents watermarking schemes. Moreover, the proposed scheme is free of false positive detection error.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Shih, F.Y.: Digital Watermarking and Steganography: Fundamentals and Techniques. CRC Press, Boca Raton (2017)

    Book  Google Scholar 

  2. Konstantinides, K., Natarajan, B., Yovanof, G.S.: Noise estimation and filtering using block-based singular value decomposition. IEEE Trans. Image Process. 6(3), 479–483 (1997)

    Article  Google Scholar 

  3. Liu, R., Tan, T.: An SVD-based watermarking scheme for protecting rightful ownership. IEEE Trans. Multimed. 4(1), 121–128 (2002)

    Article  Google Scholar 

  4. Chung, K.L., Yang, W.N., Huang, Y.H., Wu, S.T., Hsu, Y.C.: On SVD-based watermarking algorithm. Appl. Math. Comput. 188(1), 54–57 (2007)

    MathSciNet  MATH  Google Scholar 

  5. Lai, C.C.: An improved SVD-based watermarking scheme using human visual characteristics. Opt. Commun. 284(4), 938–944 (2011)

    Article  Google Scholar 

  6. Roy, S., Pal, A.K.: An indirect watermark hiding in discrete cosine transform-singular value decomposition domain for copyright protection. R. Soc. Open Sci. 4(6), 170326 (2017)

    Article  MathSciNet  Google Scholar 

  7. Fan, M.Q., Wang, H.X., Li, S.K.: Restudy on SVD-based watermarking scheme. Appl. Math. Comput. 203(2), 926–930 (2008)

    MathSciNet  MATH  Google Scholar 

  8. Makbol, N.M., Khoo, B.E., Rassem, T.H.: Block-based discrete wavelet transform-singular value decomposition image watermarking scheme using human visual system characteristics. IET Image Proc. 10(1), 34–52 (2016)

    Article  Google Scholar 

  9. Loukhaoukha, K., Chouinard, J.Y., Taieb, M.H.: Optimal image watermarking algorithm based on LWT-SVD via multi-objective ant colony optimization. J. Inf. Hiding Multimed. Signal Process. 2(4), 303–319 (2011)

    Google Scholar 

  10. Rastegar, S., Namazi, F., Yaghmaie, K., Aliabadian, A.: Hybrid watermarking algorithm based on singular value decomposition and radon transform. AEU Int. J. Electron. Commun. 65(7), 658–663 (2011)

    Article  Google Scholar 

  11. Run, R.S., Horng, S.J., Lai, J.L., Kao, T.W., Chen, R.J.: An improved SVD-based watermarking technique for copyright protection. Expert Syst. Appl. 39(1), 673–689 (2012)

    Article  Google Scholar 

  12. Zhang, X.P., Li, K.: Comments on “An SVD-based watermarking scheme for protecting rightful ownership”. IEEE Trans. Multimed. 7(3), 593–594 (2005)

    Article  Google Scholar 

  13. Ernawan, F., Kabir, M.N.: A blind watermarking technique using redundant wavelet transform for copyright protection. In: 2018 IEEE 14th International Colloquium on Signal Processing & Its Applications (CSPA), pp. 221–226. IEEE (2018, March)

  14. Ernawan, F., Kabir, M.N.: A block-based RDWT-SVD image watermarking method using human visual system characteristics. Vis. Comput. 6(1), 1–19 (2018)

    Google Scholar 

  15. Ernawan, F., Ramalingam, M., Sadiq, A.S., Mustaffa, Z.: An improved imperceptibility and robustness of \(4\times 4\) DCT-SVD image watermarking with a modified entropy. J. Telecommun. Electron. Comput. Eng. (JTEC) 9(2–7), 111–116 (2017)

    Google Scholar 

  16. Ernawan, F., Ariatmanto, D.: Image watermarking based on integer wavelet transform-singular value decomposition with variance pixels. Int. J. Electr. Comput. Eng. 9(3), 2185 (2019)

    Google Scholar 

  17. Eberhart, R., Kennedy, J.: Particle swarm optimization. Proc. IEEE Int. Conf. Neural Netw. 4(1), 1942–1948 (1995)

    Google Scholar 

  18. Mallat, S.G.: A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 1(7), 674–693 (1989)

    Article  Google Scholar 

  19. Maity, S.P., Kundu, M.K.: DHT domain digital watermarking with low loss in image informations. AEU Int. J. Electron. Commun. 64(3), 243–257 (2010)

    Article  Google Scholar 

  20. He, K.F., Gao, J., Hu, L. M., Gao, H.Y.: Watermarking for images using the HVS and SVD in the wavelet domain. In: 2006 International Conference on Mechatronics and Automation, pp. 2352–2356. IEEE (2006)

  21. Barni, M., Bartolini, F., Piva, A.: Improved wavelet-based watermarking through pixel-wise masking. IEEE Trans. Image Process. 10(5), 783–791 (2001)

    Article  Google Scholar 

  22. Andrews, H., Patterson, C.L.I.I.I.: Singular value decomposition (SVD) image coding. IEEE Trans. Commun. 24(4), 425–432 (1976)

    Article  Google Scholar 

  23. Zhang, Y., Wang, S., Ji, G.: A comprehensive survey on particle swarm optimization algorithm and its applications. Math. Probl. Eng. 2015(1), 1–38 (2015)

    MathSciNet  MATH  Google Scholar 

  24. Wang, M.S., Chen, W.C.: A hybrid DWT-SVD copyright protection scheme based on k-means clustering and visual cryptography. Comput. Stand. Interfaces 31(4), 757–762 (2009)

    Article  Google Scholar 

  25. Garbaczewski, P.: Differential entropy and time. Entropy 7(4), 253–299 (2005)

    Article  MathSciNet  Google Scholar 

  26. Singh, L., Singh, A.K., Singh, P.K.: Secure data hiding techniques: a survey. Multimed. Tools Appl. 77(15), 1–21 (2018)

    Google Scholar 

  27. Verma, V.S., Jha, R.K.: An overview of robust digital image watermarking. IETE Tech. Rev. 32(6), 479–496 (2015)

    Article  Google Scholar 

  28. Chanu, O.B., Neelima, A.: A new multi-secret image sharing scheme based on DCT. Vis. Comput. 6(1), 1–12 (2019)

    Google Scholar 

  29. Lin, C.H., Chao, M.W., Liang, C.Y., Lee, T.Y.: Scheme for 3D polygonal models. Vis. Comput. 26(6–8), 1101–1111 (2010)

    Article  Google Scholar 

  30. Sadek, R.A.: SVD based image processing applications: state of the art, contributions and research challenges. Int. J. Adv. Comput. Sci. Appl. 3(7), 26–34 (2012)

    Google Scholar 

  31. Sheskin, D.J.: Handbook of Parametric and Nonparametric Statistical Procedures. Chapman and Hall/CRC, Boca Raton (2003)

    Book  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous reviewers for their constructive comments that helped us to greatly improved the quality and readability of the paper. This work has been supported by the National Science Foundation of China under Grant Numbers 61272420 and 61472189.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sajjad Bagheri Baba Ahmadi or Gongxuan Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bagheri Baba Ahmadi, S., Zhang, G., Wei, S. et al. An intelligent and blind image watermarking scheme based on hybrid SVD transforms using human visual system characteristics. Vis Comput 37, 385–409 (2021). https://doi.org/10.1007/s00371-020-01808-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-020-01808-6

Keywords

Navigation