Survey of cube mapping methods in interactive computer graphics | The Visual Computer Skip to main content
Log in

Survey of cube mapping methods in interactive computer graphics

  • Survey
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

The standard cube mapping technique implemented in graphics pipelines, while useful in many scenarios, has significant shortcomings for important application areas in interactive computer graphics, e.g., dynamic environment mapping, omnidirectional shadow maps, or planetary-scale terrain rendering. Many alternative mapping methods have been proposed over the years with the purpose of reducing area and/or angular distortions. In this paper, we give an overview of methods suitable for interactive applications and analyze their properties. Furthermore, we evaluate a set of additional transformation functions and identify a simple new method with favorable distortion properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Arvo, J.: Stratified sampling of 2-manifolds. In: SIGGRAPH Coure Notes (2001)

  2. Bitterli, B., Novák, J., Jarosz, W.: Portal-masked environment map sampling. Comput. Graph. Forum 34(4), 13–19 (2015). https://doi.org/10.1111/cgf.12674

    Article  Google Scholar 

  3. Calabretta, M., Greisen, E.: Representations of celestial coordinates in FITS. Astron. Astrophys. 395(3), 1077–1122 (2002). https://doi.org/10.1051/0004-6361:20021327

    Article  Google Scholar 

  4. Calabretta, M.R., Roukema, B.F.: Mapping on the HEALPix grid. Mon. Not. R. Astron. Soc. 381(2), 865–872 (2007). https://doi.org/10.1111/j.1365-2966.2007.12297.x

    Article  Google Scholar 

  5. Chan, F., O’Neill, E.: Feasibility study of a quadrilateralized spherical cube earth data base. In: Technical Report EPRF 2-75 (CSC), Environmental Prediction Research Facility. https://ntrl.ntis.gov/NTRL/dashboard/searchResults/titleDetail/ADA010232.xhtml (1975). Accessed 28 Nov 2018

  6. Dimitrijević, A., Lambers, M., Rančić, D.: Comparison of spherical cube map projections used in planet-sized terrain rendering. Facta Univ., Ser.: Math. Inform. 31(2), 259–297 (2016)

    MathSciNet  MATH  Google Scholar 

  7. Everitt, C.: “Projection” repository. https://github.com/casseveritt/projection/ (2016). Accessed 28 Nov 2018

  8. Gascuel, J.D., Holzschuch, N., Fournier, G., Péroche, B.: Fast non-linear projections using graphics hardware. In: Proceedings Symposium Interactive 3D Graphics and Games (I3D), pp. 107–114 (2008). https://doi.org/10.1145/1342250.1342267

  9. Greene, N.: Environment mapping and other applications of world projections. IEEE Comput. Graph. Appl. 6(11), 21–29 (1986). https://doi.org/10.1109/MCG.1986.276658

    Article  Google Scholar 

  10. Grimm, C.M., Niebruegge, B.: Continuous cube mapping. J. Graph., GPU, Game Tools 12(4), 25–34 (2007). https://doi.org/10.1080/2151237X.2007.10129250

    Article  Google Scholar 

  11. Harrison, E., Mahdavi-Amiri, A., Samavati, F.: Optimization of inverse snyder polyhedral projection. In: International Conference on Cyberworlds, pp. 136–143 (2011). https://doi.org/10.1109/CW.2011.36

  12. Ho, T.Y., Wan, L., Leung, C.S., Lam, P.M., Wong, T.T.: Unicube for dynamic environment mapping. IEEE Trans. Vis. Comput. Graph. 17(1), 51–63 (2011). https://doi.org/10.1109/TVCG.2009.205

    Article  Google Scholar 

  13. Kemen, B., Hrabcak, L.: Outerra. http://www.outerra.com (2014). Accessed 28 Nov 2018

  14. Kooima, R., Leigh, J., Johnson, A., Roberts, D., SubbaRao, M., DeFanti, T.A.: Planetary-scale terrain composition. IEEE Trans. Vis. Comput. Graph. 15(5), 719–733 (2009). https://doi.org/10.1109/TVCG.2009.43

    Article  Google Scholar 

  15. Lambers, M.: Mappings between sphere, disc, and square. J. Comput. Graph. Tech. 5(2), 1–21 (2016)

    MathSciNet  Google Scholar 

  16. Lambers, M., Kolb, A.: Ellipsoidal cube maps for accurate rendering of planetary-scale terrain data. In: Proceedings Pacific Graphics (Short Papers), pp. 5–10 (2012). https://doi.org/10.2312/PE/PG/PG2012short/005-010

  17. Lambers, M., Sommerhoff, H., Kolb, A.: Realistic lens distortion rendering. In: Proceedings International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision (WSCG). http://wscg.zcu.cz/wscg2018/2018-WSCG-Papers-Separated.html (2018). Accessed 28 Nov 2018

  18. Lee, L.: Conformal projections based on Jacobian elliptic functions. Cartogr.: Int. J. Geogr. Inf. Geovisualization 13(1), 67–101 (1976). https://doi.org/10.3138/X687-1574-4325-WM62

    Article  Google Scholar 

  19. Lerbour, R., Marvie, J.E., Gautron, P.: Adaptive real-time rendering of planetary terrains. In: Proceedings International Conference Computer Graphics, Visualization and Computer Vision (WSCG). http://wscg.zcu.cz/WSCG2010/Papers_2010/!_2010_FULL-proceedings.pdf (2010). Accessed 28 Nov 2018

  20. Nowell, P.: Mapping a cube to a sphere. http://mathproofs.blogspot.de/2005/07/mapping-cube-to-sphere.html (2005). Accessed 28 Nov 2018

  21. O’Neill, E., Laubscher, R.: Extended studies of a quadrilateralized spherical cube earth data base. Technical Report NEPRF 3-76 (CSC), Naval Environmental Prediction Research Facility. http://www.dtic.mil/docs/citations/ADA026294 (1976). Accessed 28 Nov 2018

  22. Rančić, M., Purser, R.J., Mesinger, F.: A global shallow-water model using an expanded spherical cube: gnomonic versus conformal coordinates. Q. J. R. Meteorol. Soc. 122(532), 959–982 (1996). https://doi.org/10.1002/qj.49712253209

    Article  Google Scholar 

  23. Ronchi, C., Iacono, R., Paolucci, P.S.: The “cubed sphere”: a new method for the solution of partial differential equations in spherical geometry. J. Comput. Phys. 124(1), 93–114 (1996). https://doi.org/10.1006/jcph.1996.0047

    Article  MathSciNet  MATH  Google Scholar 

  24. Roşca, D., Plonka, G.: Uniform spherical grids via equal area projection from the cube to the sphere. J. Comput. Appl. Math. 236(6), 1033–1041 (2011). https://doi.org/10.1016/j.cam.2011.07.009

    Article  MathSciNet  MATH  Google Scholar 

  25. Scherzer, D., Wimmer, M., Purgathofer, W.: A survey of real-time hard shadow mapping methods. Comput. Graph. Forum 30(1), 169–186 (2011). https://doi.org/10.1111/j.1467-8659.2010.01841.x

    Article  Google Scholar 

  26. Snyder, J.: Map Projections—A Working Manual, Professional Paper, vol. 1395. US Geological Survey (1987). https://doi.org/10.3133/pp1395

  27. Snyder, J.: An equal-area map projection for polyhedral globes. Cartographica 29(1), 10–21 (1992). https://doi.org/10.3138/27H7-8K88-4882-1752

    Article  Google Scholar 

  28. Snyder, J., Mitchell, D.: Sampling-efficient mapping of spherical images. In: Microsoft Research Technical Report. https://www.microsoft.com/en-us/research/publication/sampling-efficient-mapping-spherical-images/ (2001). Accessed 28 Nov 2018

  29. Various: Mapping a sphere to a cube. http://stackoverflow.com/questions/2656899/mapping-a-sphere-to-a-cube (2010). Accessed 28 Nov 2018

  30. Wan, L., Wong, T.T., Leung, C.S.: Isocube: exploiting the cubemap hardware. IEEE Trans. Vis. Comput. Graph. 13(4), 720–731 (2007). https://doi.org/10.1109/TVCG.2007.1020

    Article  Google Scholar 

  31. Wong, T.T., Wan, L., Leung, C.S., Lam, P.M.: Shader X4: Advanced Rendering Techniques, Chap. Real-Time Environment Mapping with Equal Solid-Angle Spherical Quad-Map, pp. 221–233. Charles River Media (2006)

  32. Zucker, M., Higashi, Y.: Cube-to-sphere projections for procedural texturing and beyond. J. Comput. Graph. Tech. (JCGT) 7(2), 1–22 (2018)

    Google Scholar 

Download references

Acknowledgements

The polygonal world map data used in the example maps in Tables 1 and 2 are provided by Bjorn Sandvik, http://thematicmapping.org/downloads/world_borders.php, license CC BY-SA 3.0.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Lambers.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (xz 2267 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lambers, M. Survey of cube mapping methods in interactive computer graphics. Vis Comput 36, 1043–1051 (2020). https://doi.org/10.1007/s00371-019-01708-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-019-01708-4

Keywords

Navigation