Abstract
We propose an adaptive sampling and reconstruction method based on the robust principal component analysis (PCA) to denoise Monte Carlo renderings. Addressing spike noise is a challenging problem in adaptive rendering methods. We adopt the robust PCA as a pre-processing step to efficiently decompose spike noise from rendered image after the image space is sampled. Then we leverage patch-based propagation filter for feature prefiltering and apply the robust PCA to reduce dimensionality in high-dimensional feature space. After that, we estimate a per-pixel pilot bandwidth derived from kernel density estimation and construct the multivariate local linear estimator in the reduced feature space to estimate the value of each pixel. Finally, we distribute additional ray samples in the regions with higher estimated mean squared error if sampling budget remains. We demonstrate that our method makes significant improvement in terms of both numerical error and visual quality compared to the state-of-the-art.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Belcour, L., Soler, C., Subr, K., Holzschuch, N., Durand, F.: 5D covariance tracing for efficient defocus and motion blur. ACM Trans. Gr. 32(3), 31:1–31:18 (2013)
Bitterli, B., Rousselle, F., Moon, B., Guitián, J.A.I., Adler, D., Mitchell, K., Jarosz, W., Novák, J.: Nonlinearly weighted first-order regression for denoising monte carlo renderings. Comput. Graph. Forum 35(4), 107–117 (2016)
Chang, J.H.R., Wang, Y.C.F.: Propagated image filtering. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 10–18 (2015)
Cheng, M.Y., Peng, L.: Simple and efficient improvements of multivariate local linear regression. J. Multivar. Anal. 97(7), 1501–1524 (2006)
Dabov, K., Foi, A., Egiazarian, K.: Video denoising by sparse 3D transform-domain collaborative filtering. In: Signal Processing Conference, 2007 15th European, pp. 145–149 (2007)
DeCoro, C., Weyrich, T., Rusinkiewicz, S.: Density-based outlier rejection in Monte Carlo rendering. Comput. Gr. Forum 29(7), 2119–2125 (2010)
Delbracio, M., Musé, P., Buades, A., Chauvier, J., Phelps, N., Morel, J.M.: Boosting Monte Carlo rendering by ray histogram fusion. ACM Trans. Gr. 33(1), 8:1–8:15 (2014)
Donoho, D.L., Johnstone, I.M.: Ideal spatial adaptation by wavelet shrinkage. Biometrika 81(3), 425–455 (1994)
Farrugia, J.P., Peroche, B.: A progressive rendering algorithm using an adaptive perceptually based image metric. Comput. Gr. Forum 23(3), 605–614 (2004)
Hachisuka, T., Jarosz, W., Weistroffer, R.P., Dale, K., Humphreys, G., Zwicker, M., Jensen, H.W.: Multidimensional adaptive sampling and reconstruction for ray tracing. In: ACM SIGGRAPH 2008 Papers, SIGGRAPH ’08, pp. 33:1–33:10. ACM, New York (2008)
Kajiya, J.T.: The rendering equation. In: Proceedings of the 13th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’86, pp. 143–150. ACM, New York (1986)
Kalantari, N.K., Bako, S., Sen, P.: A machine learning approach for filtering Monte Carlo noise. ACM Trans. Gr. 34(4), 122:1–122:12 (2015)
Kalantari, N.K., Sen, P.: Removing the noise in Monte Carlo rendering with general image denoising algorithms. Comput. Gr. Forum (Proc. Eurogr. 2013) 32(2), 93–102 (2013)
Kristan, M., Leonardis, A., Skočaj, D.: Multivariate online kernel density estimation with Gaussian kernels. Pattern Recogn. 44(10–11), 2630–2642 (2011)
Li, T.M., Wu, Y.T., Chuang, Y.Y.: SURE-based optimization for adaptive sampling and reconstruction. ACM Trans. Gr. 31(6), 194:1–194:9 (2012)
Lin, Z., Chen, M., Ma, Y.: The augmented Lagrange multiplier method for exact recovery of corrupted low-rank matrices. ArXiv e-prints (2010)
Liu, X., Zheng, C.: Parallel adaptive sampling and reconstruction using multi-scale and directional analysis. Vis. Comput. 29(6–8), 501–511 (2013)
Liu, X., Zheng, C.: Adaptive cluster rendering via regression analysis. Vis. Comput. 31(1), 105–114 (2015)
Liu, X.D., Wu, J.Z., Zheng, C.W.: Kd-tree based parallel adaptive rendering. Vis. Comput. 28(6–8), 613–623 (2012)
Mitchell, D.P.: Generating antialiased images at low sampling densities. In: Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’87, pp. 65–72. ACM, New York (1987)
Moon, B., Carr, N., Yoon, S.E.: Adaptive rendering based on weighted local regression. ACM Trans. Gr. 33(5), 170:1–170:14 (2014)
Moon, B., Iglesias-Guitian, J.A., Yoon, S.E., Mitchell, K.: Adaptive rendering with linear predictions. ACM Trans. Gr. 34(4), 121:1–121:11 (2015)
Moon, B., McDonagh, S., Mitchell, K., Gross, M.: Adaptive polynomial rendering. ACM Trans. Gr. 35(4), 40:1–40:10 (2016)
Overbeck, R.S., Donner, C., Ramamoorthi, R.: Adaptive wavelet rendering. In: ACM SIGGRAPH Asia 2009 Papers, SIGGRAPH Asia ’09, pp. 140:1–140:12. ACM, New York (2009)
Pharr, M., Humphreys, G.: Physically Based Rendering: From Theory to Implementation. Morgan Kaufmann Publishers Inc., San Francisco (2010)
Rigau, J., Feixas, M., Sbert, M.: Refinement criteria based on f-divergences. In: Proceedings of the 14th Eurographics Workshop on Rendering, EGRW ’03, pp. 260–269. Eurographics Association, Aire-la-Ville (2003)
Rousselle, F., Knaus, C., Zwicker, M.: Adaptive sampling and reconstruction using greedy error minimization. ACM Trans. Gr. 30(6), 159:1–159:12 (2011)
Rousselle, F., Knaus, C., Zwicker, M.: Adaptive rendering with non-local means filtering. ACM Trans. Gr. 31(6), 195:1–195:11 (2012)
Rousselle, F., Manzi, M., Zwicker, M.: Robust denoising using feature and color information. Comput. Gr. Forum 32(7), 121–130 (2013)
Sen, P., Darabi, S.: On filtering the noise from the random parameters in Monte Carlo rendering. ACM Trans. Gr. 31(3), 18:1–18:15 (2012)
Stein, C.M.: Estimation of the mean of a multivariate normal distribution. Ann. Stat. 9(6), 1135–1151 (1981)
Wand, M.P., Jones, M.C.: Kernel Smoothing. Monographs on Statistics and Applied Probability. Chapman & Hall/CRC, Boca Raton (1995)
Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. Trans. Imaging Proc. 13(4), 600–612 (2004)
Yan, L.Q., Mehta, S.U., Ramamoorthi, R., Durand, F.: Fast 4D sheared filtering for interactive rendering of distribution effects. ACM Trans. Gr. 35(1), 7:1–7:13 (2015)
Zwicker, M., Jarosz, W., Lehtinen, J., Moon, B., Ramamoorthi, R., Rousselle, F., Sen, P., Soler, C., Yoon, S.E.: Recent advances in adaptive sampling and reconstruction for Monte Carlo rendering. Comput. Gr. Forum (Proc. Eurogr.) 34(2), 667–681 (2015)
Acknowledgements
Funding was provided by The National High Technology Research and Development Program of China (863 Program) (Grant No. 2012AA011206).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Yuan, H., Zheng, C. Adaptive rendering based on robust principal component analysis. Vis Comput 34, 551–562 (2018). https://doi.org/10.1007/s00371-017-1360-2
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00371-017-1360-2