Abstract
In direct volume rendering, features of interest are still typically classified by a transfer function based on the volume data’s intensity and the derived properties. Despite the efforts of previous research, classification remains a challenge. This paper presents a framework for designing new transfer functions that use bionic algorithms to map the frequency of particle occurrences to the color and opacity values. This allows us to extract features from the volume data. In particular, a novel approach is presented to allow a user to design a transfer function using the techniques of swarm intelligence. This approach consists of a population of simple agents interacting locally with one another and with the volume data. The agents scatter around the volume data and approach areas that contain features. Their movements are not only based on solution optimization, but are also governed by global optimization. After the agents have finished searching for features in the volume data, they can automatically modify the transfer function according to agents’ behavior. With these agents, we do not have to preprocess the volume data for visualizing and exploring the features.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Bruckner, S., Gröller, M.E.: Style transfer functions for illustrative volume rendering. Comput. Graph. Forum 26(3), 715–724 (2007)
Chan, M.Y., Wu, Y., Mak, W.H., Chen, W., Qu, H.: Perception-based transparency optimization for direct volume rendering. IEEE Trans. Vis. Comput. Graph. 15, 1283–1290 (2009)
Chen, M., Kaufman, A., Yagel, R.: Volume Graphics. Springer, New York (2001)
Clerc, M., Kennedy, J.: The particle swarm—explosion, stability, and convergence in a multidimensional complex space. IEEE Trans. Evol. Comput. 6(1), 58–73 (2002)
Correa, C., Ma, K.L.: The occlusion spectrum for volume classification and visualization. IEEE Trans. Vis. Comput. Graph. 15(6), 1465–1472 (2009)
Correa, C., Ma, K.L.: Visibility-driven transfer functions. In: Proceedings of IEEE Pacific Visualization Symposium 2009, pp. 177–184 (2009)
Correa, C., Ma, K.L.: Visibility histograms and visibility-driven transfer functions. IEEE Trans. Vis. Comput. Graph. 17(2), 192–204 (2011)
Drebin, R.A., Carpenter, L., Hanrahan, P.: Volume rendering. Comput. Graph. 22(4), 65–74 (1988)
Ebert, D., Rheingans, P.: Volume illustration: non-photorealistic rendering of volume models. In: Proceedings of IEEE Visualization 2000, pp. 195–202. IEEE Comput. Soc., Los Alamitos (2000)
Elvins, T.T.: A survey of algorithms for volume visualization. Comput. Graph. 26, 194–201 (1992)
Engelbrecht, A.P.: Computational Intelligence: An Introduction, 2nd edn. Wiley, New York (2007)
Fujishiro, I., Azuma, T., Takeshima, Y.: Automating transfer function design for comprehensible volume rendering based on 3D field topology. In: Proceedings of IEEE Visualization 1999, pp. 184–187. IEEE Comput. Soc., Los Alamitos (1999)
Ge, Y., Rubo, Z.: An emotional particle swarm optimization algorithm. In: Proceedings of International Conference on Natural Computation, pp. 553–561 (2005)
Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning, 1st edn. Addison-Wesley, Boston (1989)
Hadwiger, M., Fritz, L., Rezk-Salama, C., Hollt, T., Geier, G., Pabel, T.: Interactive volume exploration for feature detection and quantification in industrial CT data. IEEE Trans. Vis. Comput. Graph. 14(6), 1507–1514 (2008)
He, T., Hong, L., Kaufman, A., Pfister, H.: Generation of transfer functions with stochastic search techniques. In: Proceedings of the IEEE Visualization 1996, pp. 227–237. IEEE Comput. Soc., Los Alamitos (1996)
Johnson, C., Hansen, C.: Visualization Handbook. Academic Press, Orlando (2004)
Kaufman, A., Cohen, D., Yagel, R.: Volume graphics. Computer 26(7), 51–64 (1993)
Kennedy, J.: The particle swarm: social adaptation of knowledge. In: Proceedings of the IEEE Evolutionary Computation 1997, pp. 303–308 (1997)
Kindlmann, G., Durkin, J.: Semi-automatic generation of transfer functions for direct volume rendering. In: Proceedings of IEEE Symposium on Volume Visualization 1998, pp. 79–86 (1998)
Kindlmann, G., Whitaker, R., Tasdizen, T., Moller, T.: Curvature-based transfer functions for direct volume rendering: methods and applications. In: Proceedings of the IEEE Visualization 2003, pp. 67–70. IEEE Comput. Soc., Los Alamitos (2003)
Kniss, J., Kindlmann, G., Hansen, C.: Interactive volume rendering using multi-dimensional transfer functions and direct manipulation widgets. In: Proceedings of the IEEE Visualization 2001, pp. 255–262. IEEE Comput. Soc., Los Alamitos (2001)
Krohling, R.: Gaussian particle swarm with jumps. In: Proceedings of the IEEE Evolutionary Computation 2005, vol. 2, pp. 1226–1231 (2005)
Levoy, M.: Display of surfaces from volume data. IEEE Comput. Graph. Appl. 8(3), 29–37 (1988)
Levoy, M.: Efficient ray tracing of volume data. ACM Trans. Graph. 9, 245–261 (1990)
Marks, J., Andalman, B., Beardsley, P.A., Freeman, W., Gibson, S., Hodgins, J., Kang, T., Mirtich, B., Pfister, H., Ruml, W., Ryall, K., Seims, J., Shieber, S.: Design galleries: a general approach to setting parameters for computer graphics and animation. In: Proceedings of Computer Graphics and Interactive Techniques, pp. 389–400. ACM, New York (1997)
Niu, B., Zhu, Y., Hu, K., Li, S., He, X.: A novel particle swarm optimizer using optimal foraging theory. In: Proceedings of IEEE Information and Computing 2006, pp. 61–71 (2006)
Pfister, H., Lorensen, B., Bajaj, C., Kindlmann, G., Schroeder, W., Avila, L.S., Martin, K., Machiraju, R., Lee, J.: The transfer function bake-off. IEEE Comput. Graph. Appl. 21(3), 16–22 (2001)
Reynolds, C.W.: Flocks, herds and schools: a distributed behavioral model. Comput. Graph. 21, 25–34 (1987)
Roettger, S., Bauer, M., Stamminger, M.: Spatialized transfer functions. In: Brodlie, K.W., Duke, D.J., Joy, K.I. (eds.) Eurographics—IEEE VGTC Symposium on Visualization 2005 (2005)
Sereda, P., Bartroli, A., Serlie, I., Gerritsen, F.: Visualization of boundaries in volumetric data sets using LH histograms. IEEE Trans. Vis. Comput. Graph. 12(2), 208–218 (2006)
Shi, Y., Eberhart, R.: A modified particle swarm optimizer. In: Proceedings of IEEE World Congress on Computational Intelligence 1998, pp. 69–73 (1998)
Shi, Y., Eberhart, R.C.: Parameter selection in particle swarm optimization. In: Proceedings of the IEEE Evolutionary Programming 1998, pp. 591–600. Springer, Berlin (1998)
Takahashi, S., Takeshima, Y., Fujishiro, I.: Topological volume skeletonization and its application to transfer function design. Graph. Models 66(3), 24–49 (2004)
Takahashi, S., Takeshima, Y., Fujishiro, I., Nielson, G.M.: Emphasizing isosurface embeddings in direct volume rendering. In: Scientific Visualization: The Visual Extraction of Knowledge from Data. Mathematics and Visualization, pp. 185–206. Springer, Berlin (2006)
Tzeng, F.Y., Lum, E.B., Ma, K.L.: A novel interface for higher-dimensional classification of volume data. In: Proceedings of the IEEE Visualization 2003, pp. 66–73 (2003)
Tzeng, F.Y., Lum, E.B., Ma, K.L.: An intelligent system approach to higher-dimensional classification of volume data. IEEE Trans. Vis. Comput. Graph. 11, 273–284 (2005)
Yen, G.G., Leong, W.F.: Dynamic multiple swarms in multiobjective particle swarm optimization. IEEE Trans. Syst. Man Cybern. 39(4), 890–911 (2009)
Acknowledgements
This work was supported by the Taiwan National Science Council under Grants NSC 101-2221-E-027-131-, NSC 101-2218-E-027-001-, and NSC 101-2221-E-027-126-MY3. Data sets are courtesy of the University of Erlangen, the Lawrence Berkeley Laboratory, the University of Utah, and the OsiriX Foundation.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Hsieh, TJ., Yang, YS., Wang, JH. et al. Feature extraction using bionic particle swarm tracing for transfer function design in direct volume rendering. Vis Comput 30, 33–44 (2014). https://doi.org/10.1007/s00371-013-0777-5
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00371-013-0777-5