Feature extraction using bionic particle swarm tracing for transfer function design in direct volume rendering | The Visual Computer Skip to main content
Log in

Feature extraction using bionic particle swarm tracing for transfer function design in direct volume rendering

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

In direct volume rendering, features of interest are still typically classified by a transfer function based on the volume data’s intensity and the derived properties. Despite the efforts of previous research, classification remains a challenge. This paper presents a framework for designing new transfer functions that use bionic algorithms to map the frequency of particle occurrences to the color and opacity values. This allows us to extract features from the volume data. In particular, a novel approach is presented to allow a user to design a transfer function using the techniques of swarm intelligence. This approach consists of a population of simple agents interacting locally with one another and with the volume data. The agents scatter around the volume data and approach areas that contain features. Their movements are not only based on solution optimization, but are also governed by global optimization. After the agents have finished searching for features in the volume data, they can automatically modify the transfer function according to agents’ behavior. With these agents, we do not have to preprocess the volume data for visualizing and exploring the features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Algorithm 1
Algorithm 2
Algorithm 3
Fig. 6
Algorithm 4
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Bruckner, S., Gröller, M.E.: Style transfer functions for illustrative volume rendering. Comput. Graph. Forum 26(3), 715–724 (2007)

    Article  Google Scholar 

  2. Chan, M.Y., Wu, Y., Mak, W.H., Chen, W., Qu, H.: Perception-based transparency optimization for direct volume rendering. IEEE Trans. Vis. Comput. Graph. 15, 1283–1290 (2009)

    Article  Google Scholar 

  3. Chen, M., Kaufman, A., Yagel, R.: Volume Graphics. Springer, New York (2001)

    Google Scholar 

  4. Clerc, M., Kennedy, J.: The particle swarm—explosion, stability, and convergence in a multidimensional complex space. IEEE Trans. Evol. Comput. 6(1), 58–73 (2002)

    Article  Google Scholar 

  5. Correa, C., Ma, K.L.: The occlusion spectrum for volume classification and visualization. IEEE Trans. Vis. Comput. Graph. 15(6), 1465–1472 (2009)

    Article  Google Scholar 

  6. Correa, C., Ma, K.L.: Visibility-driven transfer functions. In: Proceedings of IEEE Pacific Visualization Symposium 2009, pp. 177–184 (2009)

    Chapter  Google Scholar 

  7. Correa, C., Ma, K.L.: Visibility histograms and visibility-driven transfer functions. IEEE Trans. Vis. Comput. Graph. 17(2), 192–204 (2011)

    Article  Google Scholar 

  8. Drebin, R.A., Carpenter, L., Hanrahan, P.: Volume rendering. Comput. Graph. 22(4), 65–74 (1988)

    Article  Google Scholar 

  9. Ebert, D., Rheingans, P.: Volume illustration: non-photorealistic rendering of volume models. In: Proceedings of IEEE Visualization 2000, pp. 195–202. IEEE Comput. Soc., Los Alamitos (2000)

    Google Scholar 

  10. Elvins, T.T.: A survey of algorithms for volume visualization. Comput. Graph. 26, 194–201 (1992)

    Article  Google Scholar 

  11. Engelbrecht, A.P.: Computational Intelligence: An Introduction, 2nd edn. Wiley, New York (2007)

    Book  Google Scholar 

  12. Fujishiro, I., Azuma, T., Takeshima, Y.: Automating transfer function design for comprehensible volume rendering based on 3D field topology. In: Proceedings of IEEE Visualization 1999, pp. 184–187. IEEE Comput. Soc., Los Alamitos (1999)

    Google Scholar 

  13. Ge, Y., Rubo, Z.: An emotional particle swarm optimization algorithm. In: Proceedings of International Conference on Natural Computation, pp. 553–561 (2005)

    Google Scholar 

  14. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning, 1st edn. Addison-Wesley, Boston (1989)

    MATH  Google Scholar 

  15. Hadwiger, M., Fritz, L., Rezk-Salama, C., Hollt, T., Geier, G., Pabel, T.: Interactive volume exploration for feature detection and quantification in industrial CT data. IEEE Trans. Vis. Comput. Graph. 14(6), 1507–1514 (2008)

    Article  Google Scholar 

  16. He, T., Hong, L., Kaufman, A., Pfister, H.: Generation of transfer functions with stochastic search techniques. In: Proceedings of the IEEE Visualization 1996, pp. 227–237. IEEE Comput. Soc., Los Alamitos (1996)

    Google Scholar 

  17. Johnson, C., Hansen, C.: Visualization Handbook. Academic Press, Orlando (2004)

    Google Scholar 

  18. Kaufman, A., Cohen, D., Yagel, R.: Volume graphics. Computer 26(7), 51–64 (1993)

    Article  Google Scholar 

  19. Kennedy, J.: The particle swarm: social adaptation of knowledge. In: Proceedings of the IEEE Evolutionary Computation 1997, pp. 303–308 (1997)

    Google Scholar 

  20. Kindlmann, G., Durkin, J.: Semi-automatic generation of transfer functions for direct volume rendering. In: Proceedings of IEEE Symposium on Volume Visualization 1998, pp. 79–86 (1998)

    Chapter  Google Scholar 

  21. Kindlmann, G., Whitaker, R., Tasdizen, T., Moller, T.: Curvature-based transfer functions for direct volume rendering: methods and applications. In: Proceedings of the IEEE Visualization 2003, pp. 67–70. IEEE Comput. Soc., Los Alamitos (2003)

    Google Scholar 

  22. Kniss, J., Kindlmann, G., Hansen, C.: Interactive volume rendering using multi-dimensional transfer functions and direct manipulation widgets. In: Proceedings of the IEEE Visualization 2001, pp. 255–262. IEEE Comput. Soc., Los Alamitos (2001)

    Google Scholar 

  23. Krohling, R.: Gaussian particle swarm with jumps. In: Proceedings of the IEEE Evolutionary Computation 2005, vol. 2, pp. 1226–1231 (2005)

    Chapter  Google Scholar 

  24. Levoy, M.: Display of surfaces from volume data. IEEE Comput. Graph. Appl. 8(3), 29–37 (1988)

    Article  Google Scholar 

  25. Levoy, M.: Efficient ray tracing of volume data. ACM Trans. Graph. 9, 245–261 (1990)

    Article  MATH  Google Scholar 

  26. Marks, J., Andalman, B., Beardsley, P.A., Freeman, W., Gibson, S., Hodgins, J., Kang, T., Mirtich, B., Pfister, H., Ruml, W., Ryall, K., Seims, J., Shieber, S.: Design galleries: a general approach to setting parameters for computer graphics and animation. In: Proceedings of Computer Graphics and Interactive Techniques, pp. 389–400. ACM, New York (1997)

    Google Scholar 

  27. Niu, B., Zhu, Y., Hu, K., Li, S., He, X.: A novel particle swarm optimizer using optimal foraging theory. In: Proceedings of IEEE Information and Computing 2006, pp. 61–71 (2006)

    Google Scholar 

  28. Pfister, H., Lorensen, B., Bajaj, C., Kindlmann, G., Schroeder, W., Avila, L.S., Martin, K., Machiraju, R., Lee, J.: The transfer function bake-off. IEEE Comput. Graph. Appl. 21(3), 16–22 (2001)

    Article  Google Scholar 

  29. Reynolds, C.W.: Flocks, herds and schools: a distributed behavioral model. Comput. Graph. 21, 25–34 (1987)

    Article  Google Scholar 

  30. Roettger, S., Bauer, M., Stamminger, M.: Spatialized transfer functions. In: Brodlie, K.W., Duke, D.J., Joy, K.I. (eds.) Eurographics—IEEE VGTC Symposium on Visualization 2005 (2005)

    Google Scholar 

  31. Sereda, P., Bartroli, A., Serlie, I., Gerritsen, F.: Visualization of boundaries in volumetric data sets using LH histograms. IEEE Trans. Vis. Comput. Graph. 12(2), 208–218 (2006)

    Article  Google Scholar 

  32. Shi, Y., Eberhart, R.: A modified particle swarm optimizer. In: Proceedings of IEEE World Congress on Computational Intelligence 1998, pp. 69–73 (1998)

    Google Scholar 

  33. Shi, Y., Eberhart, R.C.: Parameter selection in particle swarm optimization. In: Proceedings of the IEEE Evolutionary Programming 1998, pp. 591–600. Springer, Berlin (1998)

    Google Scholar 

  34. Takahashi, S., Takeshima, Y., Fujishiro, I.: Topological volume skeletonization and its application to transfer function design. Graph. Models 66(3), 24–49 (2004)

    Article  MATH  Google Scholar 

  35. Takahashi, S., Takeshima, Y., Fujishiro, I., Nielson, G.M.: Emphasizing isosurface embeddings in direct volume rendering. In: Scientific Visualization: The Visual Extraction of Knowledge from Data. Mathematics and Visualization, pp. 185–206. Springer, Berlin (2006)

    Chapter  Google Scholar 

  36. Tzeng, F.Y., Lum, E.B., Ma, K.L.: A novel interface for higher-dimensional classification of volume data. In: Proceedings of the IEEE Visualization 2003, pp. 66–73 (2003)

    Google Scholar 

  37. Tzeng, F.Y., Lum, E.B., Ma, K.L.: An intelligent system approach to higher-dimensional classification of volume data. IEEE Trans. Vis. Comput. Graph. 11, 273–284 (2005)

    Article  Google Scholar 

  38. Yen, G.G., Leong, W.F.: Dynamic multiple swarms in multiobjective particle swarm optimization. IEEE Trans. Syst. Man Cybern. 39(4), 890–911 (2009)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Taiwan National Science Council under Grants NSC 101-2221-E-027-131-, NSC 101-2218-E-027-001-, and NSC 101-2221-E-027-126-MY3. Data sets are courtesy of the University of Erlangen, the Lawrence Berkeley Laboratory, the University of Utah, and the OsiriX Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tung-Ju Hsieh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hsieh, TJ., Yang, YS., Wang, JH. et al. Feature extraction using bionic particle swarm tracing for transfer function design in direct volume rendering. Vis Comput 30, 33–44 (2014). https://doi.org/10.1007/s00371-013-0777-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-013-0777-5

Keywords

Navigation