Robust interactive cutting based on an adaptive octree simulation mesh | The Visual Computer Skip to main content
Log in

Robust interactive cutting based on an adaptive octree simulation mesh

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

We present an adaptive octree based approach for interactive cutting of deformable objects. Our technique relies on efficient refine- and node split-operations. These are sufficient to robustly represent cuts in the mechanical simulation mesh. A high-resolution surface embedded into the octree is employed to represent a cut visually. Model modification is performed in the rest state of the object, which is accomplished by back-transformation of the blade geometry. This results in an improved robustness of our approach. Further, an efficient update of the correspondences between simulation elements and surface vertices is proposed. The robustness and efficiency of our approach is underlined in test examples as well as by integrating it into a prototype surgical simulator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Bielser, D., Gross, M.H.: Interactive simulation of surgical cuts. In: Proc. of the 8th Pacific Conference on Computer Graphics and Applications, p. 116 (2000)

    Chapter  Google Scholar 

  2. Capell, S., Green, S., Curless, B., Duchamp, T., Popović, Z.: A multiresolution framework for dynamic deformations. In: Proc. ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 41–47 (2002)

    Chapter  Google Scholar 

  3. Delingette, H., Cotin, S., Ayache, N.: A hybrid elastic model allowing real-time cutting, deformations and force-feedback for surgery training and simulation. In: Proceedings of the Computer Animation, CA ’99, p. 70 (1999)

    Chapter  Google Scholar 

  4. Dequidt, J., Marchal, D., Grisoni, L.: Time-critical animation of deformable solids: Collision detection and deformable objects. Comput. Animat. Virtual Worlds 16(3-4), 177–187 (2005)

    Article  Google Scholar 

  5. Dick, C., Georgii, J., Westermann, R.: A hexahedral multigrid approach for simulating cuts in deformable objects. IEEE Trans. Vis. Comput. Graph. 99, 1077–2626 (2011)

    Google Scholar 

  6. Fierz, B., Spillmann, J., Harders, M.: Stable explicit integration of deformable objects by filtering high modal frequencies. J. WSCG 18, 81–88 (2010)

    Google Scholar 

  7. Forest, C., Delingette, H., Ayache, N.: Removing tetrahedra from a manifold mesh. In: CA ’02: Proceedings of the Computer Animation, p. 225 (2002)

    Google Scholar 

  8. Garland, M., Heckbert, P.S.: Surface simplification using quadric error metrics. In: Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’97, pp. 209–216 (1997)

    Chapter  Google Scholar 

  9. Grinspun, E., Krysl, P., Schröder, P.: CHARMS: a simple framework for adaptive simulation. ACM Trans. Graph. (Proc. SIGGRAPH) 21(3), 281–290 (2002)

    Article  Google Scholar 

  10. Ihmsen, M., Akinci, N., Becker, M., Teschner, M.: A parallel SPH implementation on multi-core CPUs. Comput. Graph. Forum 30, 99–112 (2010)

    Article  Google Scholar 

  11. Irving, G., Teran, J., Fedkiw, R.: Invertible finite elements for robust simulation of large deformation. In: Proc. ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 131–140 (2004)

    Chapter  Google Scholar 

  12. Jeřábková, L., Kuhlen, T.: Stable cutting of deformable objects in virtual environments using xfem. IEEE Comput. Graph. Appl. 29(2), 61–71 (2009)

    Article  Google Scholar 

  13. Kaufmann, P., Martin, S., Botsch, M., Grinspun, E., Gross, M.: Enrichment textures for detailed cutting of shells. In: ACM SIGGRAPH 2009 papers, SIGGRAPH ’09, pp. 50:1–50:10 (2009)

    Google Scholar 

  14. Kaufmann, P., Martin, S., Botsch, M., Gross, M.H.: Flexible simulation of deformable models using discontinuous Galerkin fem. Graph. Models 71(4), 153–167 (2009)

    Article  Google Scholar 

  15. Labelle, F., Shewchuk, J.R.: Isosurface stuffing: fast tetrahedral meshes with good dihedral angles. ACM Trans. Graph. (Proc. SIGGRAPH) 26(3), 57 (2007)

    Article  Google Scholar 

  16. Gissler, M.T.M., Ihmsen, M.: Efficient uniform grids for collision handling in medical simulators. In: International Conference on Computer Graphics Theory and Applications (GRAPP) (2011)

    Google Scholar 

  17. Martin, S., Kaufmann, P., Botsch, M., Wicke, M., Gross, M.H.: Polyhedral finite elements using harmonic basis functions. Comput. Graph. Forum 27(5), 1521–1529 (2008)

    Article  Google Scholar 

  18. Molino, N., Bao, Z., Fedkiw, R.: A virtual node algorithm for changing mesh topology during simulation. ACM Trans. Graph. 23(3), 385–392 (2004)

    Article  Google Scholar 

  19. Mor, A.B., Kanade, T.: Modifying soft tissue models: Progressive cutting with minimal new element creation. In: MICCAI ’00: Proceedings of the Third International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 598–607 (2000)

    Chapter  Google Scholar 

  20. Müller, M., Heidelberger, B., Teschner, M., Gross, M.: Meshless deformations based on shape matching. ACM Trans. Graph. (Proc. SIGGRAPH) 24(3), 471–478 (2005)

    Article  Google Scholar 

  21. Nesme, M., Faure, F., Payan, Y.: Hierarchical multi-resolution finite element model for soft body simulation. In: 2nd Workshop on Computer Assisted Diagnosis and Surgery, March, p. 2006 (2006)

    Google Scholar 

  22. Nesme, M., Kry, P.G., Jerábková, L., Faure, F.: Preserving topology and elasticity for embedded deformable models. In: SIGGRAPH ’09: ACM SIGGRAPH 2009 papers (2009)

    Google Scholar 

  23. Nienhuys, H.-W., van der Stappen, A.F.: A surgery simulation supporting cuts and finite element deformation. In: Medical Image Computing and Computer-Assisted Intervention (MICCAI). Lectures Notes in Computer Science, vol. 2208, pp. 145–152. Springer, Berlin (2001)

    Google Scholar 

  24. Pascucci, V., Frank, R.J.: Global static indexing for real-time exploration of very large regular grids. In: Proceedings of the 2001 ACM/IEEE conference on Supercomputing, Supercomputing ’01, p. 2-2 (2001)

    Chapter  Google Scholar 

  25. Pauly, M., Keiser, R., Adams, B., Dutré, P., Gross, M., Guibas, L.J.: Meshless animation of fracturing solids. In: ACM SIGGRAPH 2005 Papers, SIGGRAPH ’05, pp. 957–964 (2005)

    Chapter  Google Scholar 

  26. Pietroni, N., Ganovelli, F., Cignoni, P., Scopigno, R.: Splitting cubes: a fast and robust technique for virtual cutting. Vis. Comput. 25, 227–239 (2009)

    Article  Google Scholar 

  27. Seiler, M., Spillmann, J., Harders, M.: A threefold representation for the adaptive simulation of embedded deformable objects in contact. J. WSCG 18(1–3), 89–96 (2010)

    Google Scholar 

  28. Sifakis, E., Der, K.G., Fedkiw, R.: Arbitrary cutting of deformable tetrahedralized objects. In: SCA ’07: Proceedings of the 2007 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 73–80 (2007)

    Google Scholar 

  29. Sifakis, E., Shinar, T., Irving, G., Fedkiw, R.: Hybrid simulation of deformable solids. In: Proc. ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 81–90 (2007)

    Google Scholar 

  30. Steinemann, D., Harders, M., Gross, M., Szekely, G.: Hybrid cutting of deformable solids. In: VR ’06: Proceedings of the IEEE Conference on Virtual Reality, pp. 35–42. IEEE Computer Society, Los Alamitos (2006)

    Google Scholar 

  31. Steinemann, D., Otaduy, M., Gross, M.: Fast adaptive shape matching deformations. In: Proc. ACM SIGGRAPH/Eurographics Symposium on Computer Animation (2008)

    Google Scholar 

  32. Steinemann, D., Otaduy, M.A., Gross, M.: Fast arbitrary splitting of deforming objects. In: SCA ’06: Proceedings of the 2006 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 63–72 (2006)

    Google Scholar 

  33. Terzopoulos, D., Fleischer, K.: Modeling inelastic deformation: viscolelasticity, plasticity, fracture. In: SIGGRAPH ’88: Proceedings of the 15th Annual Conference on Computer Graphics and Interactive Techniques, pp. 269–278 (1988)

    Chapter  Google Scholar 

  34. Wicke, M., Botsch, M., Gross, M.: A finite element method on convex polyhedra. Comput. Graph. Forum (Proc. Eurographics) 26(3), 355–364 (2007)

    Article  Google Scholar 

  35. Wojtan, C., Thürey, N., Gross, M., Turk, G.: Deforming meshes that split and merge. ACM Trans. Graph. 28(3), 1–10 (2009)

    Article  Google Scholar 

  36. Wojtan, C., Turk, G.: Fast viscoelastic behavior with thin features. ACM Trans. Graph. (Proc. SIGGRAPH) (2008)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Seiler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seiler, M., Steinemann, D., Spillmann, J. et al. Robust interactive cutting based on an adaptive octree simulation mesh. Vis Comput 27, 519–529 (2011). https://doi.org/10.1007/s00371-011-0561-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-011-0561-3

Keywords