The bag of words approach for retrieval and categorization of 3D objects | The Visual Computer Skip to main content
Log in

The bag of words approach for retrieval and categorization of 3D objects

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

In this paper, we propose a novel framework for 3D object retrieval and categorization. The object is modeled in terms of its subparts as an histogram of 3D visual word occurrences. We introduce an effective method for hierarchical 3D object segmentation driven by the minima rule that combines spectral clustering—for the selection of seed-regions—with region growing based on fast marching. Descriptors attached to the regions allow the definition of the visual words. After coding of each object according to the Bag-of-Words paradigm, retrieval can be performed by matching with a suitable kernel, or categorization by learning a Support Vector Machine. Several examples on the Aim@Shape watertight dataset and on the Tosca dataset demonstrate the versatility of the proposed method in working with either 3D objects with articulated shape changes or partially occluded or compound objects. Results are encouraging as shown by the comparison with other methods for each of the analyzed scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Attene, M., Katz, S., Mortara, M., Patane, G., Spagnuolo, M., Tal, A.: Mesh segmentation—a comparative study. In: Proceedings of the IEEE International Conference on Shape Modeling and Applications, p. 7. IEEE Computer Society, Los Alamitos (2006)

    Chapter  Google Scholar 

  2. Belongie, S., Malik, J.: Matching with shape contexts. In: IEEE Workshop on Content-based Access of Image and Video Libraries. Proceedings, pp. 20–26 (2000)

  3. Biasotti, S., Marini, S., Spagnuolo, M., Falcidieno, B.: Sub-part correspondence by structural descriptors of 3D shapes. Comput. Aided Design 38(9), 1002–1019 (2006)

    Article  Google Scholar 

  4. Burges, C.: A tutorial on support vector machine for pattern recognition. Data Min. Knowl. Discov. 2, 121–167 (1998)

    Article  Google Scholar 

  5. Bustos, B., Keim, D., Saupe, D., Schreck, T., Vranić, D.: Feature-based similarity search in 3D object databases. ACM Comput. Surv. (CSUR) 37(4), 387 (2005)

    Article  Google Scholar 

  6. Cruska, G., Dance, C.R., Fan, L., Willamowski, J., Bray, C.: Visual categorization with bags of keypoints. In: ECCV Workshop on Statistical Learning in Computer Vision, pp. 1–22 (2004)

  7. Duda, R., Hart, P., Stork, D.: Pattern Classification, 2nd edn. Wiley, New York (2001)

    MATH  Google Scholar 

  8. Ferreira, A., Marini, S., Attene, M., Fonseca, M., Spagnuolo, M., Jorge, J., Falcidieno, B.: Thesaurus-based 3D object retrieval with part-in-whole matching. Int. J. Comput. Vis., pp. 1573–1405 (2008)

  9. Funkhouser, T., Kazhdan, M., Min, P., Shilane, P.: Shape-based retrieval and analysis of 3D models. Commun. ACM 48(6), 58–64 (2005)

    Article  Google Scholar 

  10. Funkhouser, T., Min, P., Kazhdan, M., Chen, J., Halderman, A., Dobkin, D.: A search engine for 3D models. ACM Trans. Graph. 22, 83–105 (2003)

    Article  Google Scholar 

  11. Gal, R., Shamir, A., Cohen-Or, D.: Pose-oblivious shape signature. IEEE Trans. Vis. Comput. Graph. 13(2), 261–271 (2007)

    Article  Google Scholar 

  12. Grauman, K., Darrell, T.: The pyramid match kernel: Efficient learning with sets of features. J. Mach. Learn. Res. 8(2), 725–760 (2007)

    Google Scholar 

  13. Hoffman, D.D., Richards, W.A.: Parts of recognition. In: Cognition, pp. 65–96 (1987)

  14. Iyer, N., Jayanti, S., Lou, K., Kalynaraman, Y., Ramani, K.: Three dimensional shape searching: State-of-the-art review and future trend. Comput. Aided Design 5(37), 509–530 (2005)

    Article  Google Scholar 

  15. Järvelin, K., Kekäläinen, J.: Cumulated gain-based evaluation of IR techniques. ACM Trans. Inf. Syst. 20(4), 422–446 (2002)

    Article  Google Scholar 

  16. Laptev, I., Marsza, M., Schmid, C., Rozenfeld, B.: Learning realistic human actions from movies. In: IEEE Conference on Computer Vision and Pattern Recognition (2008)

  17. Li, Y., Zha, H., Qin, H.: Sapetopics: A compact representation and new algorithm for 3d partial shape retrieval. In: International Conference on Computer Vision and Pattern Recognition (2006)

  18. Lin, X., Godil, A., Wagan, A.: Spatially enhanced bags of words for 3d shape retrieval. In: ISVC’08: Proceedings of the 4th International Symposium on Advances in Visual Computing, vol. 5358, pp. 349–358. Springer, Berlin (2008)

    Google Scholar 

  19. Cornea, N.D., Demirci, M.F., Silver, D., Shokoufandeh, A., Dickinson, S.J., Kantor, P.B.: 3D object retrieval using many-to-many matching of curve skeletons. In: IEEE International Conference on Shape Modeling and Applications (SMI05) (2005)

  20. Ohbuchi, R., Osada, K., Furuya, T., Banno, T.: Salient local visual features for shape-based 3d model retrieval. In: International Conference on Shape Modelling and Applications (2008)

  21. Ovsjanikov, M., Bronstein, A., Bronstein, M., Guibas, L.: Shape Google: a computer vision approach to invariant shape retrieval. In: Proc. NORDIA (2009)

  22. Petitjean, S.: A survey of methods for recovering quadrics in triangle meshes. ACM Comput. Surv. 34(2) (2002)

  23. Salton, G., McGill, M.: Introduction to Modern Information Retrieval. McGraw-Hill, New York (1983)

    MATH  Google Scholar 

  24. Shalom, S., Shapira, L., Shamir, A., Cohen-Or, D.: Part analogies in sets of objects. In: Eurographics Workshop on 3D Object Retrieval (2008)

  25. Shamir, A.: A survey on mesh segmentation techniques. Comput. Graph. Forum (2008)

  26. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intel. 22(8), 888–905 (2000)

    Article  Google Scholar 

  27. Shilane, P., Funkhouser, T.: Selecting distinctive 3D shape descriptors for similarity retrieval. In: International Conference on Shape Modelling and Applications. IEEE Computer Society, Los Alamitos (2006)

    Google Scholar 

  28. Tam, G.K.L., Lau, W.H.R.: Deformable model retrieval based on topological and geometric signatures. IEEE Trans. Vis. Comput. Graph. 13(3), 470–482 (2007)

    Article  MathSciNet  Google Scholar 

  29. Tangelder, J.W., Veltkamp, R.C.: A survey of content based 3d shape retrieval methods. In: International Conference on Shape Modelling and Applications, pp. 145–156 (2004)

  30. Tung, T., Schmitt, F.: Augmented Reeb graphs for content-based retrieval of 3d mesh models. In: Proc. IEEE Conf. on Shape Modeling and Applications, pp. 157–166 (2004)

  31. Veltkamp, R.C., ter Haar, F.B.: Shrec 2007 3d retrieval contest. Technical Report UU-CS-2007-015, Department of Information and Computing Sciences (2007)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umberto Castellani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toldo, R., Castellani, U. & Fusiello, A. The bag of words approach for retrieval and categorization of 3D objects. Vis Comput 26, 1257–1268 (2010). https://doi.org/10.1007/s00371-010-0519-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-010-0519-x

Keywords

Navigation