Segmenting point-sampled surfaces | The Visual Computer Skip to main content
Log in

Segmenting point-sampled surfaces

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Extracting features from point-based representations of geometric surface models is becoming increasingly important for purposes such as model classification, matching, and exploration. In an earlier paper, we proposed a multiphase segmentation process to identify elongated features in point-sampled surface models without the explicit construction of a mesh or other surface representation. The preliminary results demonstrated the strength and potential of the segmentation process, but the resulting segmentations were still of low quality, and the segmentation process could be slow. In this paper, we describe several algorithmic improvements to overcome the shortcomings of the segmentation process. To demonstrate the improved quality of the segmentation and the superior time efficiency of the new segmentation process, we present segmentation results obtained for various point-sampled surface models. We also discuss an application of our segmentation process to extract ridge-separated features in point-sampled surfaces of CAD models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Pauly, M., Keiser, R., Kobbelt, L.P., Gross, M.: Shape modeling with point-sampled geometry. In: SIGGRAPH ’03: ACM SIGGRAPH 2003 Papers, pp. 641–650. ACM Press, New York (2003)

    Chapter  Google Scholar 

  2. Zwicker, M., Pauly, M., Knoll, O., Gross, M.: Pointshop 3D: an interactive system for point-based surface editing. In: SIGGRAPH ’02: Proceedings of the 29th Annual Conference on Computer Graphics and Interactive Techniques, pp. 322–329. ACM Press, New York (2002)

    Chapter  Google Scholar 

  3. Pfister, H., Gross, M.: Point-based computer graphics. IEEE Comput. Graph. Appl. 24(4), 22–23 (2004)

    Article  Google Scholar 

  4. Gross, M.H.: Getting to the point…? IEEE Comput. Graph. Appl. 26(5), 96–99 (2006)

    Article  Google Scholar 

  5. Sainz, M., Pajarola, R., Lario, R.: Points reloaded: point-based rendering revisited. In: Proceedings Symposium on Point-Based Graphics, Eurographics Association, pp. 121–128, 2004

  6. Tenebaum, J.B., de Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 190(5500), 2319–2323 (2000)

    Article  Google Scholar 

  7. Yamazaki, I., Natarajan, V., Bai, Z., Hamann, B.: Segmenting point sets. In: SMI ’06: Proceedings of the IEEE International Conference on Shape Modeling and Applications 2006 (SMI’06), pp. 4–13. IEEE Computer Society, Washington (2006)

    Google Scholar 

  8. Funkhouser, T., Kazhdan, M., Shilane, P., Min, P., Kiefer, W., Tal, A., Rusinkiewicz, S., Dobkin, D.: Modeling by example. In: SIGGRAPH ’04: ACM SIGGRAPH 2004 Papers, pp. 652–663. ACM Press, New York (2004)

    Chapter  Google Scholar 

  9. Gregory, A., State, A., Lin, M., Manocha, D., Livingston, M.: Interactive surface decomposition for polyhedral morphing. Vis. Comput. 15(9), 453–470 (1999)

    Article  Google Scholar 

  10. Zockler, M., Stalling, D., Hege, H.-C.: Fast and intuitive generation of geometric shape transitions. Vis. Comput. 16(5), 241–253 (2004)

    Article  Google Scholar 

  11. Karni, Z., Gotsman, C.: Spectral compression of mesh geometry. In: SIGGRAPH ’00: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, pp. 279–286. ACM Press/Addison-Wesley, New York (2000)

    Chapter  Google Scholar 

  12. Cohen-Steiner, D., Alliez, P., Desbrun, M.: Variational shape approximation. In: SIGGRAPH ’04: ACM SIGGRAPH 2004 Papers, pp. 905–914. ACM Press, New York (2004)

    Chapter  Google Scholar 

  13. Attene, M., Falcidieno, B., Spagnuolo, M.: Hierarchical mesh segmentation based on fitting primitives. Vis. Comput. 22(3), 181–193 (2006)

    Article  Google Scholar 

  14. Zuckerberger, E., Tal, A., Shlafman, S.: Polyhedral surface decomposition with applications. Comput. Graph. 25(5), 733–743 (2002)

    Article  Google Scholar 

  15. Li, X., Toon, T., Tan, T., Huang, Z.: Decomposing polygon meshes for interactive applications. In: I3D ’01: Proceedings of the 2001 Symposium on Interactive 3D Graphics, pp. 35–42. ACM Press, New York (2001)

    Chapter  Google Scholar 

  16. Lévy, B., Petitjean, S., Ray, N., Maillot, J.: Least squares conformal maps for automatic texture atlas generation. ACM Trans. Graph. 21(3), 362–371 (2002)

    Article  Google Scholar 

  17. Biasotti, S., Marini, S., Mortara, M., Patané, G.: An overview on properties and efficacy of topological skeletons in shape modelling. In: SMI ’03: Proceedings of the Shape Modeling International 2003, p. 245. IEEE Computer Society, Washington (2003)

    Chapter  Google Scholar 

  18. Katz, S., Tal, A.: Hierarchical mesh decomposition using fuzzy clustering and cuts. In: SIGGRAPH ’03: ACM SIGGRAPH 2003 Papers, pp. 954–961. ACM Press, New York (2003)

    Chapter  Google Scholar 

  19. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 888–905 (2000)

    Article  Google Scholar 

  20. Schloegel, K., Karypis, G., Kumar, V.: Graph partitioning for high performance scientific simulations. In: Sourcebook of Parallel Computing, pp. 491–541. Morgan Kaufmann, San Francisco (2003)

    Google Scholar 

  21. Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Comput. Surv. 31(3), 264–323 (1999)

    Article  Google Scholar 

  22. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (1995)

    MATH  Google Scholar 

  23. Shamir, A.: A formulation of boundary mesh segmentation. In: 3DPVT ’04: Proceedings of the 3D Data Processing, Visualization, and Transmission, 2nd International Symposium, pp. 82–89. IEEE Computer Society, Washington (2004)

    Chapter  Google Scholar 

  24. Garland, M., Willmott, A., Heckbert, P.S.: Hierarchical face clustering on polygonal surfaces. In: I3D ’01: Proceedings of the 2001 symposium on Interactive 3D Graphics, pp. 49–58. ACM Press, New York (2001)

    Chapter  Google Scholar 

  25. Sander, P., Snyder, J., Gortler, S., Hoppe, H.: Texture mapping progressive meshes. In: SIGGRAPH ’01: Proceedings of the 28th annual conference on Computer Graphics and Interactive Techniques, pp. 409–416. ACM Press, New York (2001)

    Chapter  Google Scholar 

  26. Zhou, K., Synder, J., Guo, B., Shum, H.-Y.: Iso-charts: stretch-driven mesh parameterization using spectral analysis. In: SGP ’04: Proceedings of the 2004 Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, pp. 45–54. ACM Press, New York (2004)

    Chapter  Google Scholar 

  27. Katz, S., Leifman, G., Tal, A.: Mesh segmentation using feature points and core extraction. Vis. Comput. 21(8–10), 649–658 (2005)

    Article  Google Scholar 

  28. Lee, Y., Lee, S., Shamir, A., Cohen-Or, D., Seidel, H.P.: Intelligent mesh scissoring using 3D snakes. In: PG ’04: Proceedings of the Computer Graphics and Applications, 12th Pacific Conference on (PG’04), pp. 279–287. IEEE Computer Society, Washington (2004)

    Google Scholar 

  29. Liu, R., Zhang, H.: Segmentation of 3D meshes through spectral clustering. In: PG ’04: Proceedings of the Computer Graphics and Applications, 12th Pacific Conference (PG’04), pp. 298–305. IEEE Computer Society, Washington (2004)

    Google Scholar 

  30. Mangan, A.P., Whitaker, R.T.: Partitioning 3D surface meshes using watershed segmentation. IEEE Trans. Vis. Comput. Graph. 5(4), 308–321 (1999)

    Article  Google Scholar 

  31. Patane, G., Spagnuolo, M., Falcidieno, B.: Para-Graph: graph-based parameterization of triangle meshes with arbitrary genus. Comput. Graph. Forum 23(4), 783–797 (2004)

    Article  Google Scholar 

  32. Shalfman, S., Tal, A., Katz, S.: Metamorphosis of polyhedral surfaces using decomposition. Proc. Eurograph. 21(3), 219–228 (2002)

    Google Scholar 

  33. Zhang, E., Mischaikow, K., Turk, G.: Feature-based surface parameterization and texture mapping. ACM Trans. Graph. 24(1), 1–27 (2005)

    Article  Google Scholar 

  34. Zhou, Y., Huang, Z.: Decomposing polygon meshes by means of critical points. In: MMM ’04: Proceedings of the 10th International Multimedia Modelling Conference, p. 187. IEEE Computer Society, Washington (2004)

    Chapter  Google Scholar 

  35. Sander, P., Wood, Z., Gortler, S., Snyder, J., Hoppe, H.: Multi-chart geometry images. In: SGP ’03: Proceedings of the 2003 Eurographics/ACM SIGGRAPH symposium on Geometry Processing, Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, pp. 146–155, 2003

  36. Yamauchi, H., Lee, S., Lee, Y., Ohtake, Y., Belyaev, A., Seidel, H.P.: Feature sensitive mesh segmentation with mean shift. In: SMI ’05: Proceedings of the International Conference on Shape Modeling and Applications 2005 (SMI’ 05), pp. 238–245. IEEE Computer Society, Washington (2005)

    Google Scholar 

  37. Page, D.L., Koschan, A., Abidi, M.A.: Perception-based 3D triangle mesh segmentation using fast marching watersheds. In: Proc. IEEE Conf. Computer Vision and Pattern Recognition, vol. 2, pp. 27–32, 2003

  38. Dey, T.K., Giesen, J., Goswami, S.: Shape segmentation and matching with flow discretization. In: Proc. Workshop on Algorithms and Data Structure, pp. 25–36, 2003

  39. Gotsman, C.: On graph partitioning, spectral analysis, and digital mesh processing. In: SMI ’03: Proceedings of the International Conference on Shape Modeling and Applications 2003 (SMI’ 03), p. 165. IEEE Computer Society, Washington (2003)

    Google Scholar 

  40. Attene, M., Katz, S., Mortara, M., Patane, G., Spagnuolo, M., Tal, A.: Mesh segmentation—a comparative study. In: SMI ’06: Proceedings of the IEEE International Conference on Shape Modeling and Applications 2006 (SMI’06), pp. 14–25. IEEE Computer Society, Washington (2006)

    Google Scholar 

  41. Fiduccia, C.M., Mattheyses, R.M.: A linear time heuristic for improving network partitions. In: DAC ’82: Proceedings of the 19th Conference on Design Automation, pp. 175–181. IEEE Press, Piscataway (1982)

    Google Scholar 

  42. Kernighan, B., Lin, S.: An efficient heuristic procedure for partitioning graphs. Bell Syst. Tech. J. 291–307 (1970)

  43. Matsumoto, Y.: An Introduction to Morse Theory, Amer. Math. Soc., 2002, translated from Japanese by K. Hudson and M. Saito

  44. Milnor, J.: Morse Theory. Princeton University Press, Princeton (1963)

    MATH  Google Scholar 

  45. Bremer, P.T., Edelsbrunner, H., Hamann, B., Pascucci, V.: A topological hierarchy for functions on triangulated surfaces. IEEE Trans. Vis. Comput. Graph. 10(4), 385–396 (2004)

    Article  Google Scholar 

  46. Gyulassy, A., Natarajan, V., Pascucci, V., Bremer, P.T., Hamann, B.: A topological approach to simplification of three-dimensional scalar fields. IEEE Trans. Vis. Comput. Graph. 12(4), 474–484 (2006)

    Article  Google Scholar 

  47. Natarajan, V., Pascucci, V.: Volumetric data analysis using Morse–Smale complexes. In: SMI ’05: Proceedings of the International Conference on Shape Modeling and Applications 2005 (SMI’ 05), pp. 322–327. IEEE Computer Society, Washington (2005)

    Google Scholar 

  48. Edelsbrunner, H., Morozov, D., Pascucci, V.: Persistence-sensitive simplification of functions on 2-manifolds. In: SCG ’06: Proceedings of the Twenty-Second Annual Symposium on Computational Geometry, pp. 127–134. ACM Press, New York (2006)

    Chapter  Google Scholar 

  49. Freeman, L.C.: Centrality in social networks: conceptual classification. Soc. Netw. 1(3), 215–239 (1979)

    Article  Google Scholar 

  50. Wasserman, S., Faust, K.: Social Network Analysis: Methods and Applications. Cambridge University Press, New York (1994)

    Google Scholar 

  51. Hilaga, M., Shinagawa, Y., Komura, T., Kunii, T.L.: Topology matching for fully automatic similarity estimation of 3D shapes. In: SIGGRAPH ’01: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, pp. 203–212. ACM Press, New York (2001)

    Chapter  Google Scholar 

  52. Mount, D.M., ANN, S. Arya: A library for approximate nearest neighbor searching, http://www.cs.umd.edu/~mount/ANN/ (2010)

  53. Roger, P., Bohr, H.: A new family of global protein shape descriptors. ACM Comput. Surv. 182(2), 167–181 (2003)

    Google Scholar 

  54. AIM@SHAPE, http://www.aimatshape.net/ (2010)

  55. Level of detail for 3D graphics, http://www.lodbook.com/models/ (2010)

  56. Garland, M.: QSlim simplification software, http://www.graphics.cs.uiuc.edu/~garland/software/qslim.html (2010)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ichitaro Yamazaki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamazaki, I., Natarajan, V., Bai, Z. et al. Segmenting point-sampled surfaces. Vis Comput 26, 1421–1433 (2010). https://doi.org/10.1007/s00371-010-0428-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-010-0428-z

Keywords

Navigation