Abstract
We present a novel mesh denoising and smoothing method in this paper. Our approach starts by estimating the principal curvatures and mesh saliency value for each vertex. Then, we calculate the uniform principal curvature of each vertex based on the weighted average of local principal curvatures. After that, we use the weighted bi-quadratic Bézier surface to fit the neighborhood of each vertex using the least-square method and obtain the new vertex position by adjusting the parameters of the fitting surface. Experiments show that our smoothing method preserves the geometric feature of the original mesh model efficiently. Our approach also prevents the volume shrinkage of the input mesh and obtains smooth boundaries for non-closed mesh models.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Choudhury, P., Tumblin, J.: The trilateral filter for high contrast images and meshes. In: Proceedings of the Eurographics Symposium on Rendering, pp. 186–196. Eurographics Association, Leuven (2004)
Desbrun, M., Meyer, M., Schroder, P., Barr, A.: Implicit fairing of irregular meshes using diffusion and curvature flow. In: Proceedings of SIGGRAPH’99, pp. 317–324. ACM Press, Los Angeles, CA (1999)
Fleishman, S., Drori, I., Cohen-Or, D.: Bilateral mesh denoising. In: Proceedings of SIGGRAPH’03, pp. 950–953. ACM Press, San Diego, CA (2003)
Hoffman, D., Singh, M.: Salience of visual parts. Cognition 63(1), 29–78 (1997)
Jones, T., Durand, F., Desbrun, M.: Non-iterative, feature-preserving mesh smoothing. In: Proceedings of SIGGRAPH’03, pp. 943–949. ACM Press, San Diego, CA (2003)
Karbacher, S., Haeusler, G.: A new approach for modeling and smoothing of scattered 3D data. In: Proceedings of SPIE’03, pp. 168–177. SPIE Press, San Jose, CA (2003)
Kobbelt, L.: Discrete fairing. In: Proceedings of the 7th IMA Conference on the Mathematics of Surfaces, pp. 101–131. Springer, Cirencester (1996)
Lee, C., Varshney, A., Jacobs, D.: Mesh saliency. In: Proceedings of SIGGRAPH’05, pp. 659–666. ACM Press, Los Angeles, CA (2005)
Liu, S., Zhou, R., Nei, J., Zhou, L.: Mesh smoothing using principal curvature flow. Chin. J. Comput. 27(1), 79–84 (2004) (in Chinese)
Loop, C.: A G1 triangular spline surface of arbitrary topological type. Comput. Aided Geom. Des. 11(3), 303–330 (1994)
Mao, Z., Ma, L., Zhao, M., Li, Z.: A modified Laplacian smoothing approach with mesh saliency. In: Proceedings of Smart Graphics’06, pp. 105–113. Springer, Kyoto (2006)
Menon, J.: Constructive shell representations for freeform surfaces and solids. IEEE Comput. Graph. Appl. 14(2), 24–36 (1994)
Meyer, M., Desbrun, M., Schroder, P., Barr, A.: Discrete differential geometry operators for triangulated 2-manifolds. In: Proceedings of Visualization and Mathematics, pp. 52–58. Springer, Berlin (2002)
Milroy, M., Bradley, C., Vickers, G.: Segmentation of a wrap-around model using an active contour. Comput. Aided Des. 29(4), 299–320 (1997)
Ohtake, Y., Belyaev, A., Alexa, M.: Sparse low-degree implicit surfaces with applications to high quality rendering, feature extraction, and smoothing. In: Eurographics Symposium on Geometry Processing, pp. 149–158. Eurographics Association, Vienna (2005)
Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12(7), 629–639 (1990)
Razdan, A., Bae, M.: Curvature estimation scheme for triangle meshes using biquadratic Bézier patches. Comput. Aided Des. 37(14), 1481–1489 (2005)
Rusinkiewicz, S., Hall-Holt, O., Levoy, M.: Real-time 3D model acquisition. ACM Trans. Graph. 21(3), 438–446 (2002)
Taubin, G.: A signal processing approach to fair surface design. In: Proceedings of SIGGRAPH’95, pp. 351–358. ACM Press, Los Angeles, CA (1995)
Welch, W., Witkin, A.: Free-form shape design using triangulated surfaces. In: Proceedings of SIGGRAPH’94, pp. 247–256. ACM Press, Orlando, FL (1994)
Yokoya, N., Levine, M.: Range image segmentation based on differential geometry: a hybrid approach. IEEE Trans. Pattern Anal. Mach. Intell. 11(6), 643–649 (1989)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Li, Z., Ma, L., Jin, X. et al. A new feature-preserving mesh-smoothing algorithm. Vis Comput 25, 139–148 (2009). https://doi.org/10.1007/s00371-008-0210-7
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00371-008-0210-7