A new feature-preserving mesh-smoothing algorithm | The Visual Computer Skip to main content
Log in

A new feature-preserving mesh-smoothing algorithm

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

We present a novel mesh denoising and smoothing method in this paper. Our approach starts by estimating the principal curvatures and mesh saliency value for each vertex. Then, we calculate the uniform principal curvature of each vertex based on the weighted average of local principal curvatures. After that, we use the weighted bi-quadratic Bézier surface to fit the neighborhood of each vertex using the least-square method and obtain the new vertex position by adjusting the parameters of the fitting surface. Experiments show that our smoothing method preserves the geometric feature of the original mesh model efficiently. Our approach also prevents the volume shrinkage of the input mesh and obtains smooth boundaries for non-closed mesh models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Choudhury, P., Tumblin, J.: The trilateral filter for high contrast images and meshes. In: Proceedings of the Eurographics Symposium on Rendering, pp. 186–196. Eurographics Association, Leuven (2004)

    Google Scholar 

  2. Desbrun, M., Meyer, M., Schroder, P., Barr, A.: Implicit fairing of irregular meshes using diffusion and curvature flow. In: Proceedings of SIGGRAPH’99, pp. 317–324. ACM Press, Los Angeles, CA (1999)

    Google Scholar 

  3. Fleishman, S., Drori, I., Cohen-Or, D.: Bilateral mesh denoising. In: Proceedings of SIGGRAPH’03, pp. 950–953. ACM Press, San Diego, CA (2003)

    Google Scholar 

  4. Hoffman, D., Singh, M.: Salience of visual parts. Cognition 63(1), 29–78 (1997)

    Article  Google Scholar 

  5. Jones, T., Durand, F., Desbrun, M.: Non-iterative, feature-preserving mesh smoothing. In: Proceedings of SIGGRAPH’03, pp. 943–949. ACM Press, San Diego, CA (2003)

    Google Scholar 

  6. Karbacher, S., Haeusler, G.: A new approach for modeling and smoothing of scattered 3D data. In: Proceedings of SPIE’03, pp. 168–177. SPIE Press, San Jose, CA (2003)

    Google Scholar 

  7. Kobbelt, L.: Discrete fairing. In: Proceedings of the 7th IMA Conference on the Mathematics of Surfaces, pp. 101–131. Springer, Cirencester (1996)

    Google Scholar 

  8. Lee, C., Varshney, A., Jacobs, D.: Mesh saliency. In: Proceedings of SIGGRAPH’05, pp. 659–666. ACM Press, Los Angeles, CA (2005)

    Google Scholar 

  9. Liu, S., Zhou, R., Nei, J., Zhou, L.: Mesh smoothing using principal curvature flow. Chin. J. Comput. 27(1), 79–84 (2004) (in Chinese)

    Google Scholar 

  10. Loop, C.: A G1 triangular spline surface of arbitrary topological type. Comput. Aided Geom. Des. 11(3), 303–330 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  11. Mao, Z., Ma, L., Zhao, M., Li, Z.: A modified Laplacian smoothing approach with mesh saliency. In: Proceedings of Smart Graphics’06, pp. 105–113. Springer, Kyoto (2006)

    Google Scholar 

  12. Menon, J.: Constructive shell representations for freeform surfaces and solids. IEEE Comput. Graph. Appl. 14(2), 24–36 (1994)

    Article  Google Scholar 

  13. Meyer, M., Desbrun, M., Schroder, P., Barr, A.: Discrete differential geometry operators for triangulated 2-manifolds. In: Proceedings of Visualization and Mathematics, pp. 52–58. Springer, Berlin (2002)

    Google Scholar 

  14. Milroy, M., Bradley, C., Vickers, G.: Segmentation of a wrap-around model using an active contour. Comput. Aided Des. 29(4), 299–320 (1997)

    Article  Google Scholar 

  15. Ohtake, Y., Belyaev, A., Alexa, M.: Sparse low-degree implicit surfaces with applications to high quality rendering, feature extraction, and smoothing. In: Eurographics Symposium on Geometry Processing, pp. 149–158. Eurographics Association, Vienna (2005)

    Google Scholar 

  16. Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12(7), 629–639 (1990)

    Article  Google Scholar 

  17. Razdan, A., Bae, M.: Curvature estimation scheme for triangle meshes using biquadratic Bézier patches. Comput. Aided Des. 37(14), 1481–1489 (2005)

    Article  Google Scholar 

  18. Rusinkiewicz, S., Hall-Holt, O., Levoy, M.: Real-time 3D model acquisition. ACM Trans. Graph. 21(3), 438–446 (2002)

    Article  Google Scholar 

  19. Taubin, G.: A signal processing approach to fair surface design. In: Proceedings of SIGGRAPH’95, pp. 351–358. ACM Press, Los Angeles, CA (1995)

    Google Scholar 

  20. Welch, W., Witkin, A.: Free-form shape design using triangulated surfaces. In: Proceedings of SIGGRAPH’94, pp. 247–256. ACM Press, Orlando, FL (1994)

    Google Scholar 

  21. Yokoya, N., Levine, M.: Range image segmentation based on differential geometry: a hybrid approach. IEEE Trans. Pattern Anal. Mach. Intell. 11(6), 643–649 (1989)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Z., Ma, L., Jin, X. et al. A new feature-preserving mesh-smoothing algorithm. Vis Comput 25, 139–148 (2009). https://doi.org/10.1007/s00371-008-0210-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-008-0210-7

Keywords

Navigation