Sequential decision-making approach for quadrangular mesh generation | Engineering with Computers Skip to main content
Log in

Sequential decision-making approach for quadrangular mesh generation

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

A new indirect quadrangular mesh generation algorithm which relies on sequential decision-making techniques to search for optimal triangle recombinations is presented. In contrast to the state-of-art Blossom-quad algorithm, this new algorithm is a good candidate for addressing the 3D problem of recombining tetrahedra into hexahedra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Baudouin TC, Remacle JF, Marchandise E, Henrotte F, Geuzaine C (2014) A frontal approach to hex-dominant mesh generation. Adv Model Simul Eng Sci 1(1):1–30

    Article  Google Scholar 

  2. Blacker TD, Stephenson MB (1991) Paving: a new approach to automated quadrilateral mesh generation. Int J Numer Methods Eng 32(4):811–847

    Article  MATH  Google Scholar 

  3. Borouchaki H, Frey PJ (1998) Adaptive triangular-quadrilateral mesh generation. Int J Numer Methods Eng 41(5):915–934

    Article  MathSciNet  MATH  Google Scholar 

  4. Bunin G (2006) Non-local topological clean-up. In: Pébay PP (ed) Proceedings of the 15th International Meshing Roundtable. Springer, pp 3–29

  5. D’Azevedo E (2000) Are bilinear quadrilaterals better than linear triangles? SIAM J Sci Comput 22(1):198–217

    Article  MathSciNet  MATH  Google Scholar 

  6. Frey PJ, Marechal L (1998) Fast adaptive quadtree mesh generation. In: Proceedings of the Seventh International Meshing Roundtable, pp 211–224

  7. Jiménez A, Kiwi M (2011) Counting perfect matchings in the geometric dual. Electron Notes Discret Math 37:225–230

    Article  Google Scholar 

  8. Jung T, Wehenkel L, Ernst D, Maes F (2013) Optimized look-ahead tree policies: a bridge between look-ahead tree policies and direct policy search. Int J Adapt Control Signal Process. Available as preprint at: http://onlinelibrary.wiley.com/ doi:10.1002/acs.2387/full

  9. Kolmogorov V (2009) Blossom V: a new implementation of a minimum cost perfect matching algorithm. Math Program Comput 1(1):43–67

    Article  MathSciNet  MATH  Google Scholar 

  10. Kowalski N, Ledoux F, Frey P (2013) A PDE based approach to multidomain partitioning and quadrilateral meshing. Springer, pp 137–154

  11. Lee CK, Lo SH (1994) A new scheme for the generation of a graded quadrilateral mesh. Comput Struct 52(5):847–857

    Article  MathSciNet  MATH  Google Scholar 

  12. Lévy B, Liu Y (2010) Lp centroidal voronoi tessellation and its applications. ACM Trans Graph 29(4): 119:1–119:11

  13. Lo S, Lee C (1992) On using meshes of mixed element types in adaptive finite element analysis. Finite Elem Anal Des 11(4):307–336

    Article  MATH  Google Scholar 

  14. Maes F, St-Pierre D, Ernst D (2013) Monte carlo search algorithm discovery for single-player games. IEEE Trans Comput Intell AI Games 5(3):201–213. doi:10.1109/TCIAIG.2013.2239295

    Article  Google Scholar 

  15. Meshkat S, Talmor D (2000) Generating a mixed mesh of hexahedra, pentahedra and tetrahedra from an underlying tetrahedral mesh. Int J Numer Methods Eng 49(1–2):17–30

    Article  MATH  Google Scholar 

  16. Owen SJ, Staten ML, Canann SA, Saigal S (1999) Q-Morph: an indirect approach to advancing front quad meshing. Int J Numer Methods Eng 44(9):1317–1340

    Article  MATH  Google Scholar 

  17. Remacle JF, Henrotte F, Carrier-Baudouin T, Bechet E, Marchandise E, Geuzaine C, Mouton T (2013) A frontal delaunay quad mesh generator using the lnorm. Int J Numer Methods Eng 94(5):494–512

    Article  MathSciNet  Google Scholar 

  18. Remacle JF, Lambrechts J, Seny B, Marchandise E, Johnen A, Geuzaine C (2012) Blossom-quad: A non-uniform quadrilateral mesh generator using a minimum-cost perfect-matching algorithm. Int J Numer Methods Eng 89(9):1102–1119

    Article  MathSciNet  MATH  Google Scholar 

  19. Yamakawa S, Shimada K (2003) Fully-automated hex-dominant mesh generation with directionality control via packing rectangular solid cells. Int J Numer Methods Eng 57(15):2099–2129

    Article  MathSciNet  MATH  Google Scholar 

  20. Zhu J, Zienkiewicz O, Hinton E, Wu J (1991) A new approach to the development of automatic quadrilateral mesh generation. Int J Numer Methods Eng 32(4):849–866

    Article  MATH  Google Scholar 

  21. Zienkiewicz O, Taylor R (2000) The finite element method—the basis, vol 1. Elsevier

Download references

Acknowledgments

This research project was funded in part by the Walloon Region under WIST 3 grant 1017074 (DOMHEX).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christophe Geuzaine.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Johnen, A., Ernst, D. & Geuzaine, C. Sequential decision-making approach for quadrangular mesh generation. Engineering with Computers 31, 729–735 (2015). https://doi.org/10.1007/s00366-014-0383-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-014-0383-9

Keywords

Navigation