Performance characterization of nonlinear optimization methods for mesh quality improvement | Engineering with Computers
Skip to main content

Performance characterization of nonlinear optimization methods for mesh quality improvement

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

We characterize the performance of gradient- and Hessian-based optimization methods for mesh quality improvement. In particular, we consider the steepest descent and Polack-Ribière conjugate gradient methods which are gradient based. In the Hessian-based category, we consider the quasi-Newton, trust region, and feasible Newton methods. These techniques are used to improve the quality of a mesh by repositioning the vertices, where the overall mesh quality is measured by the sum of the squares of individual elements according to the aspect ratio metric. The effects of the desired degree of accuracy in the improved mesh, problem size, initial mesh configuration, and heterogeneity in element volume on the performance of the optimization solvers are characterized on a series of tetrahedral meshes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Babuska I, Suri M (1994) The p and h-p versions of the finite element method, basic principles, and properties. SIAM Rev 35:579–632

    MathSciNet  Google Scholar 

  2. Berzins M (1997) Solution-based mesh quality for triangular and tetrahedral meshes. In: Proceedings of the 6th International Meshing Roundtable, Sandia National Laboratories, pp 427–436

  3. Berzins M (1998) Mesh quality—Geometry, error estimates, or both? In: Proceedings of the 7th International Meshing Roundtable, Sandia National Laboratories, pp 229–237

  4. Babuska I, Aziz A (1976) On the angle condition in the finite element method. SIAM J Numer Anal 13:214–226

    Article  MathSciNet  MATH  Google Scholar 

  5. Fried E (1972) Condition of finite element matrices generated from nonuniform meshes. AIAA J 10:219–221

    Article  MATH  Google Scholar 

  6. Shewchuk J (2002) What is a good linear element? Interpolation, conditioning, and quality measures. In: Proceedings of the 11th International Meshing Roundtable, Sandia National Laboratories, pp 115–126

  7. Freitag L, Ollivier-Gooch C (2000) A cost/benefit analysis for simplicial mesh improvement techniques as measured by solution efficiency. Int J Comput Geom Appl 10:361–382

    MathSciNet  MATH  Google Scholar 

  8. Bank R, Sherman A, Weiser A (1983) Refinement algorithms and data structures for regular local mesh refinement. In: Stepleman R et al (eds) Scientific Computing. IMACS, Amsterdam, pp 3–17

  9. Ollivier-Gooch C (1995) Multigrid acceleration of an upwind Euler solver on unstructured meshes. AIAA J 33:1822–1827

    Article  MATH  Google Scholar 

  10. Rivara M (1984) Mesh refinement processes based on the generalized bisection of simplices. SIAM J Numer Anal 21:604–613

    Article  MathSciNet  MATH  Google Scholar 

  11. de L’isle E, George P (1995) Optimization of tetrahedral meshes. In: Babuska I, Henshaw W, Oliger J, Flaherty J, Hopcroft J, Tezduyar T (eds) Modeling, Mesh Generation and Adaptive Numerical Methods for PDEs, vol. 72. Springer, New York, pp 97–127

  12. Edelsbrunner H, Shah N (1992) Incremental topological flipping works for regular triangulations. In: Proceedings of the 8th ACM Symposium on Computational Geometry, pp 43–52

  13. Joe B (1989) Three-dimensional triangulations from local transformations. SIAM J Sci Stat Comp 10:718–741

    Article  MathSciNet  MATH  Google Scholar 

  14. Joe B (1995) Construction of three-dimensional improved-quality triangulations using local transformations. SIAM J Sci Comput 16:1292–1307

    Article  MathSciNet  MATH  Google Scholar 

  15. Amezua E, Hormaza M, Hernandez A, Ajuria M (1995) A method of the improvement of 3D solid finite element meshes. Adv Eng Softw 22:45–53

    Article  Google Scholar 

  16. Canann S, Stephenson M, Blacker T (1993) Optismoothing: an optimization-driven approach to mesh smoothing. Finite Elem Anal Des 13:185–190

    Article  MathSciNet  MATH  Google Scholar 

  17. Parthasarathy V, Kodiyalam S (1991) A constrained optimization approach to finite element mesh smoothing. Finite Elem Anal Des 9:309–320

    Article  MATH  Google Scholar 

  18. Knupp P, Freitag L (2002) Tetrahedral mesh improvement via optimization of the element condition number. Int J Numer Meth Eng 53:1377–1391

    Article  MathSciNet  MATH  Google Scholar 

  19. Freitag L, Plassmann P (2000) Local optimization-based simplicial mesh untangling and improvement. Int J Numer Meth Eng 49:109–125

    Article  MATH  Google Scholar 

  20. Amenta N, Bern M, Eppstein D (1997) Optimal point placement for mesh smoothing. In: Proceedings of the 8th ACM-SIAM Symposium on Discrete Algorithms, pp 528–537

  21. Zavattieri P (1996) Optimization strategies in unstructured mesh generation. Int J Numer Meth Eng 39:2055–2071

    Article  MATH  Google Scholar 

  22. Brewer M, Freitag Diachin L, Knupp P, Leurent T, Melander D (2003) The Mesquite Mesh Quality Improvement Toolkit. In: Proceedings of the 12th International Meshing Roundtable, Sandia National Laboratories, pp 239–250

  23. Nocedal J, Wright S (2006) Numerical optimization, 2nd edn. Springer, New York

  24. Munson T (2007) Mesh shape-quality optimization using the inverse mean-ratio metric. Math Program 110:561–590

    Article  MathSciNet  MATH  Google Scholar 

  25. Cavendish J, Field D, Frey W (1985) An approach to automatic three-dimensional finite element mesh generation. Int J Num Meth Eng 21:329–347

    Article  MATH  Google Scholar 

  26. Knupp P (2009) Sandia National Laboratories. Personal communication

  27. Knupp P (2001) Algebraic mesh quality metrics. SIAM J Sci Comput 23:193–218

    Article  MathSciNet  MATH  Google Scholar 

  28. Armijo L (1966) Minimization of functions having Lipschitz-continuous first partial derivatives. Pac J Math 16:1–3

    MathSciNet  MATH  Google Scholar 

  29. Kelley CT (2003) Solving nonlinear equations with Newton’s method. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  30. Sandia National Laboratories (2011) CUBIT Generation and Mesh Generation Toolkit, http://cubit.sandia.gov/

  31. Si H, TetGen—a quality tetrahedral mesh generator and three-dimensional delaunay triangulator, http://tetgen.berlios.de/

  32. Freitag L, Knupp P, Munson T, Shontz S (2004) A comparison of inexact Newton and coordinate descent mesh optimization techniques. In: Proceedings of the 13th International Meshing Roundtable, Sandia National Laboratories, pp 243–254

  33. Diachin L, Knupp P, Munson T, Shontz S (2006) A comparison of two optimization methods for mesh quality improvement. Eng Comput 22:61–74

    Article  Google Scholar 

  34. Shontz SM, Knupp P (2008) The effect of vertex reordering on 2D local mesh optimization efficiency. In: Proceedings of the 17th International Meshing Roundtable, Sandia National Laboratories, pp 107–124

Download references

Acknowledgments

The work of Shankar Prasad Sastry was funded in part by an Institute for CyberScience grant from The Pennsylvania State University. The work of Suzanne M. Shontz was funded in part by NSF grant CNS 0720749 and a Grace Woodward grant from The Pennsylvania State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suzanne M. Shontz.

Additional information

A preliminary version of a portion of these results appeared in shortened form in the Proceedings of the 2009 International Meshing Roundtable.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sastry, S.P., Shontz, S.M. Performance characterization of nonlinear optimization methods for mesh quality improvement. Engineering with Computers 28, 269–286 (2012). https://doi.org/10.1007/s00366-011-0227-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-011-0227-9

Keywords