Improving a Centroid-Based Clustering by Using Suitable Centroids from Another Clustering | Journal of Classification
Skip to main content

Improving a Centroid-Based Clustering by Using Suitable Centroids from Another Clustering

  • Published:
Journal of Classification Aims and scope Submit manuscript

Abstract

Fast centroid-based clustering algorithms such as k-means usually converge to a local optimum. In this work, we propose a method for constructing a better clustering from two such suboptimal clustering solutions based on the fact that each suboptimal clustering has benefits regarding to including some of the correct clusters. We develop the new method COTCLUS to find two centroids from one clustering and replace them by two centroids from the other clustering so that the maximum decrease in the mean square error of the first clustering is achieved. After modifying centroids, k-means algorithm with few iterations is applied for fine-tuning. In an iterative algorithm, the resulting clustering is further improved using a new given clustering. The proposed method can find optimal clustering in a very small number of iterations for datasets with well-separated clusters. We demonstrate by experiments that the proposed method outperforms the selected competitive methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arthur, D., & Vassilvitskii, S. (2007). K-means++: the advantages of careful seeding. Paper Proceedings of 18th annual ACM-SIAM symposium on Discrete algorithms, pp. 1027–1035.

  • Brusco, M. J., & Steinley, D. (2007). A comparison of heuristic procedures for minimum within-cluster sums of squares partitioning. Psychometrika, 72(4), 583–600.

    Article  MathSciNet  Google Scholar 

  • Celebi, M. E., Kingravi, H. A., & Vela, P. A. (2013). A comparative study of efficient initialization methods for the k-means clustering algorithm. Expert Systems with Applications, 40(1), 200–210.

    Article  Google Scholar 

  • de Amorim, R. C., Makarenkov, V., & Mirkin, B. (2016). A-Ward pβ: effective hierarchical clustering using the Minkowski metric and a fast k-means initialisation. Information Sciences, 370, 343–354.

    Article  Google Scholar 

  • Fränti, P., & Kivijärvi, J. (2000). Randomised local search algorithm for the clustering problem. Pattern Analysis & Applications, 3(4), 358–369.

    Article  MathSciNet  Google Scholar 

  • Fränti, P., & Virmajoki, O. (2006). Iterative shrinking method for clustering problems. Pattern Recognition, 39(5), 761–775.

    Article  Google Scholar 

  • Franti, P., Virmajoki, O., & Hautamaki, V. (2006). Fast agglomerative clustering using a k-nearest neighbor graph. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(11), 1875–1881.

    Article  Google Scholar 

  • Fred, A. L., & Jain, A. K. (2005). Combining multiple clusterings using evidence accumulation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(6), 835–850.

    Article  Google Scholar 

  • Hansen, P., & Mladenović, N. (2001). J-means: a new local search heuristic for minimum sum of squares clustering. Pattern Recognition, 34(2), 405–413.

    Article  Google Scholar 

  • Hruschka, E. R., Campello, R. J., & Freitas, A. A. (2009). A survey of evolutionary algorithms for clustering. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 39(2), 133–155.

    Article  Google Scholar 

  • Hubert, L., & Arabie, P. (1985). Comparing partitions. Journal of Classification, 2(1), 193–218.

    Article  Google Scholar 

  • Jain, A. K., Murty, M. N., & Flynn, P. J. (1999). Data clustering: a review. ACM computing surveys (CSUR), 31(3), 264–323.

    Article  Google Scholar 

  • Klein, R. W., & Dubes, R. C. (1989). Experiments in projection and clustering by simulated annealing. Pattern Recognition, 22(2), 213–220.

    Article  Google Scholar 

  • Likas, A., Vlassis, N., & Verbeek, J. J. (2003). The global k-means clustering algorithm. Pattern Recognition, 36(2), 451–461.

    Article  Google Scholar 

  • Maulik, U., & Bandyopadhyay, S. (2000). Genetic algorithm-based clustering technique. Pattern Recognition, 33(9), 1455–1465.

    Article  Google Scholar 

  • Rezaei, M., & Fränti, P. (2016). Set matching measures for external cluster validity. IEEE Transactions on Knowledge and Data Engineering, 28(8), 2173–2186.

    Article  Google Scholar 

  • Selim, S. Z., & Alsultan, K. (1991). A simulated annealing algorithm for the clustering problem. Pattern Recognition, 24(10), 1003–1008.

    Article  MathSciNet  Google Scholar 

  • Steinley, D. (2003). Local optima in k-means clustering: what you don't know may hurt you. Psychological Methods, 8(3), 294–304.

    Article  Google Scholar 

  • Steinley, D., & Brusco, M. J. (2007). Initializing k-means batch clustering: a critical evaluation of several techniques. Journal of Classification, 24(1), 99–121.

    Article  MathSciNet  Google Scholar 

  • Tzortzis, G., & Likas, A. (2014). The MinMax k-means clustering algorithm. Pattern Recognition, 47(7), 2505–2516.

    Article  Google Scholar 

  • Ward, J. H., Jr. (1963). Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association, 58(301), 236–244.

    Article  MathSciNet  Google Scholar 

  • Zhang, T., Ramakrishnan, R., & Livny, M. (1997). BIRCH: a new data clustering algorithm and its applications. Data Mining and Knowledge Discovery, 1(2), 141–182.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Rezaei.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezaei, M. Improving a Centroid-Based Clustering by Using Suitable Centroids from Another Clustering. J Classif 37, 352–365 (2020). https://doi.org/10.1007/s00357-018-9296-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00357-018-9296-4

Keywords