Abstract
Real-time simulations have been getting more attention in the field of self-organizing molecular pattern formation such as a microtubule gliding assay. When appropriate microtubule interactions are set up on gliding assay experiments, microtubules often organize and create higher-level dynamics such as ring and bundle structures. In order to reproduce such higher-level dynamics in silico, we have been focusing on making a real-time 3D microtubule simulation. This real-time 3D microtubule simulation enables us to gain more knowledge on microtubule dynamics and their swarm movements by means of adjusting simulation parameters in a real-time fashion. For the recreation of microtubule dynamics our model proposes the use of the Lennard-Jones potential for our particle-based simulation, as well as a flocking algorithm for self-organization. One of the technical challenges when creating a real-time 3D simulation is computational scalability performance, as well as balancing the 3D rendering and computing work flows. GPU programming plays an essential role in executing the millions of tasks necessary for microtubule interaction detection and makes this real-time 3D simulation possible. However, an excess number of tasks sometimes causes a memory bottleneck which prevents performance scalability when using GPGPU processing. In order to alleviate the memory bottleneck, we propose a new parallel interaction detection algorithm that uses warp level optimizations for the two memory bound interactions discussed in this paper.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Bdorf, J., Gaburov, E., Zwart, S.P.: A sparse octree gravitational n-body code that runs entirely on the gpu processor. J. Comput. Phys. 231(7), 2825–2839 (2012). doi:10.1016/j.jcp.2011.12.024
Green, S.: Particle simulation using cuda—nvidia documentation (2012). http://docs.nvidia.com/cuda/samples/5_simulations/particles/doc/particles.pdf
Gutmann, G., Inoue, D., Kakugo, A., Konagaya, A.: Real-time 3d microtubule gliding simulation. Commun. Comput. Inf. Sci. Life Syst. Model. Simul. 13–22 (2014). doi:10.1007/978-3-662-45283-7
Gutmann, G., Inoue, D., Kakugo, A., Konagaya, A.: Real-time 3d microtubule gliding simulation accelerated by gpu computing. Int. J. Autom. Comput. 13(2), 108116 (2016). doi:10.1007/s11633-015-0947-1
Hagiya, M., Konagaya, A., Kobayashi, S., Saito, H., Murata, S.: Molecular robots with sensors and intelligence. Acc. Chem. Res. 47(6), 1681–1690 (2014). doi:10.1021/ar400318d
Hess, H., Clemmens, J., Brunner, C., Doot, R., Luna, S., Ernst, K.H., Vogel, V.: Molecular self-assembly of nanowires and nanospools using active transport. Nano Lett. 5(4), 629–633 (2005). doi:10.1021/nl0478427
Horio, T., Murata, T.: The role of dynamic instability in microtubule organization. Front. Plant Sci. 5 (2014). doi:10.3389/fpls.2014.00511
Inoue, D., Kabir, A.M.R., Mayama, H., Gong, J.P., Sada, K., Kakugo, A.: Growth of ring-shaped microtubule assemblies through stepwise active self-organisation. Soft Matter 9(29), 7061 (2013). doi:10.1039/c3sm50704a
Inoue, D., Mahmot, B., Kabir, A.M.R., Farhana, T.I., Tokuraku, K., Sada, K., Konagaya, A., Kakugo, A.: Depletion force induced collective motion of microtubules driven by kinesin. Nanoscale 7(43), 18,054–18,061 (2015). doi:10.1039/c5nr02213d
Kabir, A.M.R., Wada, S., Inoue, D., Tamura, Y., Kajihara, T., Mayama, H., Sada, K., Kakugo, A., Gong, J.P.: Formation of ring-shaped assembly of microtubules with a narrow size distribution at an airbuffer interface. Soft Matter 8(42):10,863 (2012). doi:10.1039/c2sm26441b
Kong, K.Y., Marcus, A.I., Giannakakou, P., Alberti, C., Wang, M.D.: A two dimensional simulation of microtubule dynamics. In: 2008 International conference on technology and applications in biomedicine (2008). doi:10.1109/itab.2008.4570630
Kraikivski, P., Lipowsky, R., Kierfeld, J.: Enhanced ordering of interacting filaments by molecular motors. Phys. Rev. Lett. 96(25) (2006). doi:10.1103/physrevlett.96.258103
Kudrolli, A., Lumay, G., Volfson, D., Tsimring, L.S.: Swarming and swirling in self-propelled polar granular rods. Phys. Rev. Lett. 100(5) (2008). doi:10.1103/physrevlett.100.058001
Murata, S., Konagaya, A., Kobayashi, S., Saito, H., Hagiya, M.: Molecular robotics: a new paradigm for artifacts. New Gener. Comput. 31(1), 2745 (2013). doi:10.1007/s00354-012-0121-z
Pharr, M., Fernando, R.: GPU Gems 2: Programming Techniques for High-Performance Graphics and General-Purpose Computation. Addison-Wesley, Boston (2005)
Sumino, Y., Nagai, K.H., Shitaka, Y., Tanaka, D., Yoshikawa, K., Chat, H., Oiwa, K.: Large-scale vortex lattice emerging from collectively moving microtubules. Nature 483(7390), 44852 (2012). doi:10.1038/nature10874
Vicsek, T., Czirk, A., Ben-Jacob, E., Cohen, I., Shochet, O.: Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett. 75(6), 12261229 (1995). doi:10.1103/physrevlett.75.1226
Wells, D.B., Aksimentiev, A.: Mechanical properties of a complete microtubule revealed through molecular dynamics simulation. Biophys. J. 99(2), 629637 (2010). doi:10.1016/j.bpj.2010.04.038
Wolfe, M.: Understanding the cuda data parallel threading model (2010). http://www.pgroup.com/lit/articles/insider/v2n1a5.htm
Acknowledgements
This work was supported by a Grant-in-Aid for Scientific Research on Innovation Areas Molecular Robotics (No. 24104004) of The Ministry of Education, Culture, Sports, Science, and Technology, Japan.
Author information
Authors and Affiliations
Corresponding author
About this article
Cite this article
Gutmann, G., Inoue, D., Kakugo, A. et al. Parallel Interaction Detection Algorithms for a Particle-based Live Controlled Real-time Microtubule Gliding Simulation System Accelerated by GPGPU. New Gener. Comput. 35, 157–180 (2017). https://doi.org/10.1007/s00354-017-0011-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00354-017-0011-5