Extreme Statistics of Superdiffusive Lévy Flights and Every Other Lévy Subordinate Brownian Motion | Journal of Nonlinear Science Skip to main content
Log in

Extreme Statistics of Superdiffusive Lévy Flights and Every Other Lévy Subordinate Brownian Motion

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

The search for hidden targets is a fundamental problem in many areas of science, engineering, and other fields. Studies of search processes often adopt a probabilistic framework, in which a searcher randomly explores a spatial domain for a randomly located target. There has been significant interest and controversy regarding optimal search strategies, especially for superdiffusive processes. The optimal search strategy is typically defined as the strategy that minimizes the time it takes a given single searcher to find a target, which is called a first hitting time (FHT). However, many systems involve multiple searchers, and the important timescale is the time it takes the fastest searcher to find a target, which is called an extreme FHT. In this paper, we study extreme FHTs for any stochastic process that is a random time change of Brownian motion by a Lévy subordinator. This class of stochastic processes includes superdiffusive Lévy flights in any space dimension, which are processes described by a Fokker–Planck equation with a fractional Laplacian. We find the short-time distribution of a single FHT for any Lévy subordinate Brownian motion and use this to find the full distribution and moments of extreme FHTs as the number of searchers grows. We illustrate these rigorous results in several examples and numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Atkinson, R.P.D., Rhodes, C.J., Macdonald, D.W., Anderson, R.M.: Scale-free dynamics in the movement patterns of jackals. Oikos 98(1), 134–140 (2002)

    Google Scholar 

  • Bartumeus, F., Peters, F., Pueyo, S., Marrasé, C., Catalan, J.: Helical Lévy walks: adjusting searching statistics to resource availability in microzooplankton. Proc. Natl. Acad. Sci. 100(22), 12771–12775 (2003)

    Google Scholar 

  • Bénichou, O., Loverdo, C., Moreau, M., Voituriez, R.: Intermittent search strategies. Rev. Mod. Phys. 83(1), 81 (2011)

    MATH  Google Scholar 

  • Bertoin, J.: Lévy processes, vol. 121. Cambridge University Press, Cambridge (1996)

    MATH  Google Scholar 

  • Boyer, D., Ramos-Fernández, G., Miramontes, O., Mateos, J.L., Cocho, G., Larralde, H., Ramos, H., Rojas, F.: Scale-free foraging by primates emerges from their interaction with a complex environment. Proc. R. Soc. B Biol. Sci. 273(1595), 1743–1750 (2006)

    Google Scholar 

  • Buldyrev, S.V., Raposo, E.P., Bartumeus, F., Havlin, S., Rusch, F.R., da Luz, M.G.E., Viswanathan, G.M.: Comment on “Inverse square Lévy walks are not optimal search strategies for \(d\ge 2\)”. Phys. Rev. Lett. 126(4), 048901 (2021)

  • Carnaffan, S., Kawai, R.: Solving multidimensional fractional Fokker-Planck equations via unbiased density formulas for anomalous diffusion processes. SIAM J. Sci. Comput. 39(5), B886–B915 (2017)

    MathSciNet  MATH  Google Scholar 

  • Clementi, A., d’Amore, F., Giakkoupis, G., Natale, E.: On the search efficiency of parallel Lévy walks on \({\mathbb{Z}}^{2}\). arXiv preprint arXiv:2004.01562 (2020)

  • Dubkov, A.A., Spagnolo, B., Uchaikin, V.V.: Lévy flight superdiffusion: an introduction. Int. J. Bifurc. Chaos 18(09), 2649–2672 (2008)

    MATH  Google Scholar 

  • Durrett, R.: Probability: Theory and Examples. Cambridge University Press, Cambridge (2019)

    MATH  Google Scholar 

  • Edwards, A.M., Phillips, R.A., Watkins, N.W., Freeman, M.P., Murphy, E.J., Afanasyev, V., Buldyrev, S.V., da Luz, M.G.E., Raposo, E.P., Eugene Stanley, H., et al.: Revisiting Lévy flight search patterns of wandering albatrosses, bumblebees and deer. Nature 449(7165), 1044–1048 (2007)

  • Eliazar, I., Klafter, J.: On the first passage of one-sided Lévy motions. Physica A 336(3–4), 219–244 (2004)

    Google Scholar 

  • Feinerman, O., Korman, A., Lotker, Z., Sereni, J.-S.: Collaborative search on the plane without communication. In: Proceedings of the 2012 ACM Symposium on Principles of Distributed Computing, pp. 77–86 (2012)

  • Frost, J.R., Stone, Lawrence D.: Review of search theory: advances and applications to search and rescue decision support. US Department of Transportation (2001)

  • Gao, T., Duan, J., Li, X., Song, R.: Mean exit time and escape probability for dynamical systems driven by Lévy noises. SIAM J. Sci. Comput. 36(3), A887–A906 (2014)

    MATH  Google Scholar 

  • Getoor, R.K.: First passage times for symmetric stable processes in space. Trans. Am. Math. Soc. 101(1), 75–90 (1961)

    MathSciNet  MATH  Google Scholar 

  • Hölldobler, B., Wilson, E.O., et al.: The Ants. Harvard University Press, Harvard (1990)

    Google Scholar 

  • Jarvis, J.U.M., Bennett, N.C., Spinks, A.C.: Food availability and foraging by wild colonies of damaraland mole-rats (cryptomys damarensis): implications for sociality. Oecologia 113(2), 290–298 (1998)

    Google Scholar 

  • Kao, M.-Y., Reif, J.H., Tate, S.R.: Searching in an unknown environment: an optimal randomized algorithm for the cow-path problem. Inf. Comput. 131(1), 63–79 (1996)

    MathSciNet  MATH  Google Scholar 

  • Kim, P., Song, R., Vondraček, Z.: Two-sided green function estimates for killed subordinate Brownian motions. Proc. Lond. Math. Soc. 104(5), 927–958 (2012)

    MathSciNet  MATH  Google Scholar 

  • Koren, T., Lomholt, M.A., Chechkin, A.V., Klafter, J., Metzler, R.: Leapover lengths and first passage time statistics for Lévy flights. Phys. Rev. Lett. 99(16), 160602 (2007)

    Google Scholar 

  • Koren, T., Chechkin, A.V., Klafter, J.: On the first passage time and leapover properties of Lévy motions. Physica A 379(1), 10–22 (2007)

    MathSciNet  Google Scholar 

  • Lawley, S.D., Madrid, J.B.: A probabilistic approach to extreme statistics of Brownian escape times in dimensions 1, 2, and 3. J. Nonlinear Sci. 30, 1207–1227 (2020). https://doi.org/10.1007/s00332-019-09605-9

    Article  MathSciNet  MATH  Google Scholar 

  • Lawley, S.D.: Distribution of extreme first passage times of diffusion. J. Math. Biol. 80, 2301–2325 (2020). https://doi.org/10.1007/s00285-020-01496-9

    Article  MathSciNet  MATH  Google Scholar 

  • Lawley, S.D.: Extreme first passage times of piecewise deterministic Markov processes. Nonlinearity 34(5), (2019). https://doi.org/10.1088/1361-6544/abcb07

  • Lawley, S.D.: Universal formula for extreme first passage statistics of diffusion. Phys. Rev. E 101(1), 012413 (2020)

    MathSciNet  Google Scholar 

  • Lawley, S.D.: Extreme statistics of anomalous subdiffusion following a fractional Fokker-Planck equation: subdiffusion is faster than normal diffusion. J. Phys. A Math. Theor. 53(38), 385005 (2020)

    MathSciNet  MATH  Google Scholar 

  • Lawley, S.D.: Extreme first-passage times for random walks on networks. Phys. Rev. E 102(6), 062118 (2020)

    MathSciNet  Google Scholar 

  • Levernier, N., Textor, J., Bénichou, O., Voituriez, R.: Inverse square Lévy walks are not optimal search strategies for \(d\ge 2\). Phys. Rev. Lett. 124(8), 080601 (2020)

    MathSciNet  Google Scholar 

  • Levernier, N., Textor, J., Bénichou, O., Voituriez, R.: Reply to “Comment on ‘Inverse square Lévy walks are not optimal search strategies for \(d\ge 2\)”. Phys. Rev. Lett. 126(4), 048902 (2021)

  • Lischke, A., Pang, G., Gulian, M., Song, F., Glusa, C., Zheng, X., Mao, Z., Cai, W., Meerschaert, M.M., Ainsworth, M., et al.: What is the fractional Laplacian? A comparative review with new results. J. Comput. Phys. 404, 109009 (2020)

    MathSciNet  MATH  Google Scholar 

  • Lomholt, M.A., Ambjörnsson, T., Metzler, R.: Optimal target search on a fast-folding polymer chain with volume exchange. Phys. Rev. Lett. 95(26), 260603 (2005)

    Google Scholar 

  • Madrid, J.B., Lawley, S.D.: Competition between slow and fast regimes for extreme first passage times of diffusion. J. Phys. A Math. Theor. 53(33), 335002 (2020)

    MathSciNet  MATH  Google Scholar 

  • Meerschaert, M.M., Sikorskii, A.: Stochastic Models for Fractional Calculus, vol. 43. Walter de Gruyter GmbH & Co KG, Berlin (2019)

    MATH  Google Scholar 

  • Metzler, R., Klafter, J.: The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A Math. Gen. 37(31), R161 (2004)

    MathSciNet  MATH  Google Scholar 

  • Morse, Phillip M., Kendall, G.: How to hunt a submarine. In: The World of Mathematics, pp. 2160–2181 (1956)

  • Palyulin, V.V., Blackburn, G., Lomholt, M.A., Watkins, N.W., Metzler, R., Klages, R., Chechkin, A.V.: First passage and first hitting times of Lévy flights and Lévy walks. New J. Phys. 21(10), 103028 (2019)

    MathSciNet  Google Scholar 

  • Pavlyukevich, I.: Lévy flights, non-local search and simulated annealing. J. Comput. Phys. 226(2), 1830–1844 (2007)

    MathSciNet  MATH  Google Scholar 

  • Ramos-Fernández, G., Mateos, J.L., Miramontes, O., Cocho, G., Larralde, H., Ayala-Orozco, B.: Lévy walk patterns in the foraging movements of spider monkeys (Ateles geoffroyi). Behav. Ecol. Sociobiol. 55(3), 223–230 (2004)

    Google Scholar 

  • Reverey, J.F., Jeon, J.-H., Bao, H., Leippe, M., Metzler, R., Selhuber-Unkel, C.: Superdiffusion dominates intracellular particle motion in the supercrowded cytoplasm of pathogenic acanthamoeba castellanii. Sci. Rep. 5(1), 1–14 (2015)

    Google Scholar 

  • Reynolds, A.M.: Current status and future directions of Lévy walk research. Biol. Open 7(1), bio030106 (2018). https://doi.org/10.1242/bio.030106

  • Ro, S., Kim, Y.W.: Parallel random target searches in a confined space. Phys. Rev. E 96(1), 012143 (2017)

    Google Scholar 

  • Schoener, T.W.: Theory of feeding strategies. Annu. Rev. Ecol. Syst. 2(1), 369–404 (1971)

    Google Scholar 

  • Schuss, Z., Basnayake, K., Holcman, D.: Redundancy principle and the role of extreme statistics in molecular and cellular biology. Phys. Life Rev. 28, 52–79 (2019)

    MATH  Google Scholar 

  • Shlesinger, M.F., Klafter, J.: Lévy walks versus Lévy flights. In: On Growth and Form, pp. 279–283. Springer (1986)

  • Shlesinger, M.F.: Search research. Nature 443(7109), 281–282 (2006)

    Google Scholar 

  • Sims, D.W., Witt, M.J., Richardson, A.J., Southall, E.J., Metcalfe, J.D.: Encounter success of free-ranging marine predator movements across a dynamic prey landscape. Proc. R. Soc. B Biol. Sci. 273(1591), 1195–1201 (2006)

    Google Scholar 

  • Torney, C., Neufeld, Z., Couzin, I.D.: Context-dependent interaction leads to emergent search behavior in social aggregates. Proc. Natl. Acad. Sci. 106(52), 22055–22060 (2009)

    Google Scholar 

  • Torney, C.J., Berdahl, A., Couzin, I.D.: Signalling and the evolution of cooperative foraging in dynamic environments. PLoS Comput. Biol. 7(9), e1002194 (2011)

    MathSciNet  Google Scholar 

  • Traniello, J.F.A.: Recruitment behavior, orientation, and the organization of foraging in the carpenter ant camponotus pennsylvanicus degeer (hymenoptera: Formicidae). Behav. Ecol. Sociobiol. 2(1), 61–79 (1977)

    Google Scholar 

  • Varadhan, S.R.S.: Diffusion processes in a small time interval. Commun. Pure Appl. Math. 20(4), 659–685 (1967)

    MathSciNet  MATH  Google Scholar 

  • Viswanathan, G.M., Afanasyev, V., Buldyrev, S.V., Murphy, E.J., Prince, P.A., Eugene Stanley, H.: Lévy flight search patterns of wandering albatrosses. Nature 381(6581), 413–415 (1996)

    Google Scholar 

  • Viswanathan, G.M., Buldyrev, S.V., Havlin, S., DaLuz, M.G.E., Raposo, E.P., Eugene Stanley, H.: Optimizing the success of random searches. Nature 401(6756), 911–914 (1999)

  • Viswanathan, G.M., Raposo, E.P., Da Luz, M.G.E.: Lévy flights and superdiffusion in the context of biological encounters and random searches. Phys. Life Rev. 5(3), 133–150 (2008)

    Google Scholar 

  • Wardak, A.: First passage leapovers of Lévy flights and the proper formulation of absorbing boundary conditions. J. Phys. A Math. Theor. 53(37), 375001 (2020)

    MathSciNet  MATH  Google Scholar 

  • Weiss, G.H., Shuler, K.E., Lindenberg, K.: Order statistics for first passage times in diffusion processes. J. Stat. Phys. 31(2), 255–278 (1983)

    MathSciNet  MATH  Google Scholar 

  • Weng, T., Zhang, J., Small, M., Hui, P.: Multiple random walks on complex networks: a harmonic law predicts search time. Phys. Rev. E 95(5), 052103 (2017)

    Google Scholar 

  • Wenzel, J.W., Pickering, J.: Cooperative foraging, productivity, and the central limit theorem. Proc. Natl. Acad. Sci. 88(1), 36–38 (1991)

    Google Scholar 

  • Zaburdaev, V., Denisov, S., Klafter, J.: Lévy walks. Rev. Mod. Phys. 87(2), 483 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sean D. Lawley.

Additional information

Communicated by Anthony Bloch.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In this appendix, we prove the results in the main text.

Lemma 4

Assume \(S=\{S(t)\}_{t\ge 0}\) is a compound Poisson process plus a drift, meaning its Laplace exponent is in (13) with \(b\ge 0\) and \(\int _{0}^{\infty }\,\nu (d z)\in (0,\infty )\). If \(F:[0,\infty )\rightarrow [0,1]\) is continuous and satisfies (24), then (25) holds.

Proof of Lemma 4

By assumption, we have that \(S(t)=bt+\sum _{m=1}^{M(t)}Z_{m}\), where \(M=\{M(t)\}_{t\ge 0}\) is a Poisson process with rate \(\lambda =\int _{0}^{\infty }\,\nu (d z)\in (0,\infty )\) and \(\{Z_{m}\}_{m\ge 1}\) are iid nonnegative random variables independent of M. In this case, the probability measure of \(Z_{m}\) is \(\nu (d z)/\lambda \). Decomposing the mean based on the value of M(t) yields

$$\begin{aligned} {\mathbb {E}}[F(S(t))] ={\mathbb {E}}[F(S(t))1_{M(t)=0}]+{\mathbb {E}}[F(S(t))1_{M(t)=1}]+{\mathbb {E}}[F(S(t))1_{M(t)\ge 2}], \end{aligned}$$

where \(1_{A}\) denotes the indicator function on an event A. Since M(t) is a Poisson random variable with mean \(\lambda t\) and F is bounded, we have that \({\mathbb {E}}[F(S(t))1_{M(t)\ge 2}]=o(t)\) as \(t\rightarrow 0+\). Furthermore, since M and \(Z_{1}\) are independent, we have that

$$\begin{aligned} {\mathbb {E}}[F(S(t))1_{M(t)=1}]&={\mathbb {P}}(M(t)=1){\mathbb {E}}[F(bt+Z_{1})] =\lambda t e^{-\lambda t}{\mathbb {E}}[F(bt+Z_{1})],\\ {\mathbb {E}}[F(S(t))1_{M(t)=0}]&={\mathbb {P}}(M(t)=0){\mathbb {E}}[F(bt)] =e^{-\lambda t}F(bt). \end{aligned}$$

Since F is bounded, F is continuous, and \(\int _{0}^{\infty }\,\nu (d s)<\infty \), we complete the proof by applying the Lebesgue dominated convergence to conclude

$$\begin{aligned} {\mathbb {E}}[F(bt+Z_{1})] =\frac{1}{\lambda }\int _{0}^{\infty }F(bt+s)\,\nu (d s) \rightarrow \frac{1}{\lambda }\int _{0}^{\infty }F(s)\,\nu (d s)\quad \text {as }t\rightarrow 0+. \end{aligned}$$

\(\square \)

Proof of Proposition 1

The boundedness of F and (24) ensure that the integral in (25) is finite. Let \(\varepsilon =2^{-j}>0\) for some \(j\in \{0,1,2,\dots \}\) and define

$$\begin{aligned} \begin{aligned} S_{[\varepsilon ,\infty )}(t)&:=bt+\iint _{z\in [\varepsilon ,\infty ),\,t'\in [0,t]} z\,{\textbf{N}}(d t',d z),\\ S_{(0,\varepsilon )}(t)&:=\iint _{z\in (0,\varepsilon ),\,t'\in [0,t]} z\,{\textbf{N}}(d t',d z), \end{aligned} \end{aligned}$$
(49)

where \({\textbf{N}}\) is a Poisson point process on the first quadrant with intensity measure \(d t'\,\nu (d z)\). The process S can then be written as \(S(t)=S_{[\varepsilon ,\infty )}(t)+S_{(0,\varepsilon )}(t)\). Since F is Lipschitz, there exists a constant \(\kappa >0\) so that

$$\begin{aligned} \begin{aligned}&{\mathbb {E}}[F(S_{[\varepsilon ,\infty )}(t))] -\kappa {\mathbb {E}}[S_{(0,\varepsilon )}(t))] \le {\mathbb {E}}[F(S(t))]\\&\qquad \qquad \qquad \le {\mathbb {E}}[F(S_{[\varepsilon ,\infty )}(t))] +\kappa {\mathbb {E}}[S_{(0,\varepsilon )}(t))]\quad \text {for all }t>0. \end{aligned} \end{aligned}$$
(50)

Since \(S_{[\varepsilon ,\infty )}\) is a compound Poisson process plus a drift, Lemma 4 implies that

$$\begin{aligned} \lim _{t\rightarrow 0+}t^{-1}{\mathbb {E}}[F(S_{[\varepsilon ,\infty )}(t))] =\rho _{\varepsilon } :=bF'(0)+\int _{\varepsilon }^{\infty }F(s)\,\nu (d s) <\infty . \end{aligned}$$
(51)

To handle the terms in (50) involving \(S_{(0,\varepsilon )}(t)\), recall that \(\varepsilon =2^{-j}\) and observe that a dyadic partitioning of the interval \((0,\varepsilon )\) yields

$$\begin{aligned} S_{(0,\varepsilon )}(t)&:=\iint _{z\in (0,\varepsilon ),\,t'\in [0,t]} z\,{\textbf{N}}(d t',d z) \le \sum _{k=j}^{\infty }2^{-k}{\textbf{N}}([0,t]\times [2^{-k-1},2^{-k}]). \end{aligned}$$

Since \({\textbf{N}}\) is a Poisson point process, we have that

$$\begin{aligned} 2^{-k}{\mathbb {E}}\big [{\textbf{N}}([0,t]\times [2^{-k-1},2^{-k}])\big ] =2t\int _{2^{-k-1}}^{2^{-k}}2^{-k-1}\,\nu (d z) \le 2t\int _{2^{-k-1}}^{2^{-k}}z\,\nu (d z). \end{aligned}$$

Therefore,

$$\begin{aligned} {\mathbb {E}}[S_{(0,\varepsilon )}(t)] \le 2t\int _{0}^{\varepsilon }z\,\nu (d z). \end{aligned}$$
(52)

Combining (50) with (51) and (52) yields

$$\begin{aligned}&\rho _{\varepsilon } -2\kappa \int _{0}^{\varepsilon }z\,\nu (d z) \le \liminf _{t\rightarrow 0+}\frac{{\mathbb {E}}[F(S(t))]}{t} \le \limsup _{t\rightarrow 0+}\frac{{\mathbb {E}}[F(S(t))]}{t} \\&\quad \le \rho _{\varepsilon } +2\kappa \int _{0}^{\varepsilon }z\,\nu (d z). \end{aligned}$$

Since these bounds converge to \(\rho \) as \(\varepsilon \rightarrow 0+\), the proof is complete. \(\square \)

Lemma 5

Let \(H:[0,\infty )\rightarrow [0,1]\) be nondecreasing and satisfy (24). Then, \(\limsup _{t\rightarrow 0+}{\mathbb {E}}[H(S(t))]/t<\infty \).

Proof of Lemma 5

Using the definitions in (49), we have that

$$\begin{aligned} H(S(t)) =H(S_{[\varepsilon ,\infty )}(t)+S_{(0,\varepsilon )}(t))&\le H(2 S_{[\varepsilon ,\infty )}(t)) +H(2S_{(0,\varepsilon )}(t)). \end{aligned}$$

Since \(2 S_{[\varepsilon ,\infty )}(t)\) is a compound Poisson process plus a drift, Lemma 4 ensures that \( \lim _{t\rightarrow 0+}{\mathbb {E}}[H(2 S_{[\varepsilon ,\infty )}(t))]/t <\infty \). Since H satisfies (24), there exists an \(s_{0}\in (0,1]\) and a \(\theta \ge 1\) so that \(H(s)\le \theta s\) for all \(s\in (0,s_{0}]\). Therefore, \(H(s)\le \theta s/s_{0}\) for all \(s\ge 0\). The proof is complete since (52) implies

$$\begin{aligned} {\mathbb {E}}[H(2S_{(0,\varepsilon )}(t))] \le \frac{2\theta }{s_{0}}{\mathbb {E}}[S_{(0,\varepsilon )}(t)] \le \frac{4\theta t}{s_{0}}\int _{0}^{\varepsilon }z\,\nu (d z). \end{aligned}$$

\(\square \)

Proof of Theorem 3

Define \(F(s):={\mathbb {P}}(B(s)+X(0)\in U)\in [0,1]\) for \(s\ge 0\). Using the independence of B and X(0), we have

$$\begin{aligned} F(s) =\frac{1}{(4\pi s)^{d/2}}\iint _{U\times U_{0}}\exp \Big (\frac{-\Vert x-x_{0}\Vert ^{2}}{4s}\Big )\,\mu _{0}(d x_{0})\,d x,\quad \text {if }s>0, \end{aligned}$$
(53)

where \(\mu _{0}\) is the probability measure of X(0) with support \(U_{0}\subset {\mathbb {R}}^{d}\). Using standard results for interchanging differentiation with integration (for example, see Theorem A.5.3 in Durrett (2019)), F(s) is infinitely differentiable and each derivative is bounded. Furthermore, (33) ensures that \(F(0)=F'(0)=0\), and thus Proposition 1 implies

$$\begin{aligned} \lim _{t\rightarrow 0+}\frac{{\mathbb {P}}({{X}}(t)\in U)}{t} =\lim _{t\rightarrow 0+}\frac{{\mathbb {E}}[F(s)]}{t} =\rho :=\int _{0}^{\infty }{\mathbb {P}}({{B}}(s)+X(0)\in U)\,\nu (d s). \end{aligned}$$
(54)

In the first equality in (54), we have used the independence of B, S, and X(0). Note that \(\rho \in (0,\infty )\). Indeed, Proposition 1 implies \(\rho <\infty \). Further, \(\rho >0\) by (i) the assumption in (31), (ii) the fact that \({{B}}(s)\in {\mathbb {R}}^{d}\) is a Gaussian random variable with variance proportional to \(s>0\), and (iii) U has strictly positive Lebesgue measure (since U is nonempty and the closure of its interior).

To complete the proof, we therefore need to show that

$$\begin{aligned} \lim _{t\rightarrow 0+}t^{-1}{\mathbb {P}}(\tau \le t) =\lim _{t\rightarrow 0+}t^{-1}{\mathbb {P}}({{X}}(t)\in U). \end{aligned}$$
(55)

For \(t>0\), define the enlarged target \(U^{\delta (t)}:=\{x\in {\mathbb {R}}^{d}:\inf _{y\in U}\Vert x-y\Vert \le \delta (t)\}\), where we set \(\delta (t):=t^{1/4}>0\) in order to satisfy

$$\begin{aligned} \lim _{t\rightarrow 0+}\delta (t)=0 \quad \text {and}\quad \lim _{t\rightarrow 0+}\delta (t)t^{-1/2}=\infty . \end{aligned}$$
(56)

Decomposing the event \(\tau \le t\) based on the position of X(t) yields

$$\begin{aligned} {\mathbb {P}}(\tau \le t)&={\mathbb {P}}({{X}}(t)\in U) +{\mathbb {P}}(\tau \le t,{{X}}(t)\in U^{\delta (t)}\backslash U) +{\mathbb {P}}(\tau \le t,{{X}}(t)\notin U^{\delta (t)}). \end{aligned}$$

Therefore, showing (55) amounts to showing that

$$\begin{aligned} \lim _{t\rightarrow 0+}t^{-1}{\mathbb {P}}(\tau \le t,{{X}}(t)\in U^{\delta (t)}\backslash U)&=0=\lim _{t\rightarrow 0+}t^{-1}{\mathbb {P}}(\tau \le t,{{X}}(t)\notin U^{\delta (t)}). \end{aligned}$$
(57)

We first prove the first equality in (57). Since \({{X}}(t)={{B}}(S(t))+X(0)\) and B, X(0), and S are independent, integrating over the possible values of S(t) yields

$$\begin{aligned} {\mathbb {P}}(\tau \le t,{{X}}(t)\in U^{\delta (t)}\backslash U)&\le {\mathbb {P}}({{X}}(t)\in U^{\delta (t)}\backslash U) ={\mathbb {E}}[F_{0}(S(t);t)], \end{aligned}$$

where \(F_{0}(s;t):={\mathbb {P}}({{B}}(s)+X(0)\in U^{\delta (t)}\backslash U)\). By the assumption in (33), we may take \(t_{0}\) sufficiently small so that \(U^{\delta (t_{0})}\cap U_{0}=\varnothing \). Therefore, if \(t\in (0,t_{0}]\), then \(F_{0}(s;t)\) satisfies the assumptions of Proposition 1 [by the same argument used for F(s) in (53)]. Therefore, Proposition 1 implies that we may take t sufficiently small so that,

$$\begin{aligned} t^{-1}{\mathbb {P}}(\tau \le t,{{X}}(t)\in U^{\delta (t)}\backslash U) \le 2\int _{0}^{\infty }{\mathbb {P}}({{B}}(s)+X(0)\in U^{\delta (t_{0})}\backslash U)\,\nu (d s)<\infty . \end{aligned}$$

Now, it is immediate that \({\mathbb {P}}({{B}}(s)+X(0)\in U^{\delta (t_{0})}\backslash U)\rightarrow 0\) as \(t_{0}\rightarrow 0\) for each \(s\ge 0\). Hence, the Lebesgue dominated convergence theorem implies

$$\begin{aligned} \lim _{t_{0}\rightarrow 0+}\int _{0}^{\infty }{\mathbb {P}}({{B}}(s)+X(0)\in U^{\delta (t_{0})}\backslash U)\,\nu (d s)=0, \end{aligned}$$

and thus the first equality in (57) holds. Turning to the second equality in (57), conditioning that \(\tau \le t\) implies

$$\begin{aligned} {\mathbb {P}}(\tau \le t,{{X}}(t)\notin U^{\delta (t)}) ={\mathbb {P}}({{X}}(t)\notin U^{\delta (t)}\,|\,\tau \le t){\mathbb {P}}(\tau \le t), \end{aligned}$$

and the fact that \({\widetilde{\tau }}\le \tau \) almost surely and Lemma 5 imply

$$\begin{aligned} \limsup _{t\rightarrow 0+}t^{-1}{\mathbb {P}}(\tau \le t) \le \limsup _{t\rightarrow 0+}t^{-1}{\mathbb {P}}({\widetilde{\tau }}\le t) <\infty , \end{aligned}$$

since \({\mathbb {P}}({\widetilde{\tau }}\le t)={\mathbb {E}}[H(S(t)]\) where \(H(s):={\mathbb {P}}(\sigma \le s)\) is nondecreasing. Next, it follows from the strong Markov property (Bertoin 1996) that

$$\begin{aligned} {\mathbb {P}}({{X}}(t)\notin U^{\delta (t)}\,|\,\tau \le t) \le \sup _{r\in (0,t]}{\mathbb {P}}_{0}(\Vert {{X}}(r)\Vert \ge \delta (t)), \end{aligned}$$

where \({\mathbb {P}}_{0}\) denotes the probability measure conditioned that \({{X}}(0)=0\). Again using that B and S are independent, we have that

$$\begin{aligned} \begin{aligned} {\mathbb {P}}_{0}(\Vert {{X}}(r)\Vert \ge \delta (t)) ={\mathbb {E}}[F_{1}(S(r);t)] \le {\mathbb {E}}[F_{1}(S(t);t)],\quad \text {if }r\in [0,t], \end{aligned} \end{aligned}$$
(58)

since \(F_{1}(s;t):={\mathbb {P}}(\Vert B(s)\Vert \ge \delta (t))\) is an increasing function of s and S is almost surely nondecreasing. Define

$$\begin{aligned} \delta _{1}(t) :=(1+b)t>0, \end{aligned}$$
(59)

and observe that (58) implies that for \(r\in (0,t]\),

$$\begin{aligned} \begin{aligned} {\mathbb {P}}_{0}(\Vert {{X}}(r)\Vert \ge \delta (t))&\le {\mathbb {E}}[F_{1}(S(t);t)1_{S(t)<\delta _{1}(t)}] +{\mathbb {E}}[F_{1}(S(t);t)1_{S(t)\ge \delta _{1}(t)}]. \end{aligned} \end{aligned}$$

Since S(t)/t converges in probability to \(b\ge 0\) as \(t\rightarrow 0+\) (Bertoin 1996), we have that

$$\begin{aligned} {\mathbb {E}}[F_{1}(S(t);t)1_{S(t)\ge \delta _{1}(t)}] \le {\mathbb {P}}(S(t)\ge \delta _{1}(t)) ={\mathbb {P}}(S(t)\ge (1+b)t)\rightarrow 0\quad \text {as }t\rightarrow 0+. \end{aligned}$$

Next, since \(F_{1}(s;t)\) is an increasing function of s, we have that

$$\begin{aligned} {\mathbb {E}}[F_{1}(S(t);t)1_{S(t)<\delta _{1}(t)}] \le F_{1}(\delta _{1}(t);t) ={\mathbb {P}}(\Vert B(\delta _{1}(t))\Vert \ge \delta (t)). \end{aligned}$$

The Brownian scaling in (16) and the choices of \(\delta (t)\) in (56) and \(\delta _{1}(t)\) in (59) imply

$$\begin{aligned} {\mathbb {P}}(\Vert B(\delta _{1}(t))\Vert \ge \delta (t)) ={\mathbb {P}}(\Vert B(1)\Vert \ge \delta (t)(\delta _{1}(t))^{-1/2}) \rightarrow 0\quad \text {as }t\rightarrow 0+. \end{aligned}$$

Hence, the second equality in (57) holds and the proof is complete. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lawley, S.D. Extreme Statistics of Superdiffusive Lévy Flights and Every Other Lévy Subordinate Brownian Motion. J Nonlinear Sci 33, 53 (2023). https://doi.org/10.1007/s00332-023-09913-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00332-023-09913-1

Keywords

Mathematics Subject Classification

Navigation