Abstract
The time that it takes a diffusing particle to find a small target has emerged as a critical quantity in many systems in molecular and cellular biology. In this paper, we extend the theory for calculating this time to account for several ubiquitous biological features which have largely been ignored in the mathematics and physics literature on this problem. In particular, we allow (i) targets to diffuse on the two-dimensional boundary of the three-dimensional domain, (ii) targets to diffuse in the interior of the domain, (iii) the diffusivities of the searcher particle and the targets to stochastically fluctuate, (iv) targets to be stochastically gated, and (v) the transition times between fluctuations in diffusivity and gating to have effectively any probability distribution. In this general framework, we analytically calculate the leading order behavior of the mean first passage time and splitting probability for the searcher to reach a target as the target size decays, which is the so-called narrow escape limit. To make these extensions, we use a generalized Itô’s formula to derive a system of coupled partial differential equations which are satisfied by statistics of the process, where the size of the system and its spatial dimension can be arbitrarily large. We apply matched asymptotic analysis to this system and verify our analytical results by numerical simulation. Our results reveal several new features and generic principles of diffusive search for small targets.
Similar content being viewed by others
References
Alberts, B., Johnson, A.D., Lewis, J., Morgan, D., Raff, M., Roberts, K., Walter, P.: Molecular Biology of the Cell, 6th edn. W. W. Norton & Company, New York (2014)
Ammari, H., Garnier, J., Kang, H., Lee, H., Sølna, K.: The mean escape time for a narrow escape problem with multiple switching gates. Multiscale Model. Simul. 9, 817–833 (2011)
Barrandon, C., Spiluttini, B., Bensaude, O.: Non-coding RNAs regulating the transcriptional machinery. Mol. Biol. Cell 100, 83–95 (2008)
Bénichou, O., Voituriez, R.: Narrow-escape time problem: time needed for a particle to exit a confining domain through a small window. Phys. Rev. Lett. 100, 168105 (2008)
Berg, H.C., Purcell, E.M.: Physics of chemoreception. Biophys. J. 20, 193–219 (1977)
Borgdorff, A.J., Choquet, D.: Regulation of AMPA receptor lateral movements. Nature 417, 649 (2002)
Bramson, M., Lebowitz, J.L.: Asymptotic behavior of densities in diffusion-dominated annihilation reactions. Phys. Rev. Lett. 61, 2397 (1988)
Bray, A.J., Blythe, R.A.: Exact asymptotics for one-dimensional diffusion with mobile traps. Phys. Rev. Lett. 89, 150601 (2002)
Bressloff, P.C., Lawley, S.D.: Escape from subcellular domains with randomly switching boundaries. Multiscale Model. Simul. 13, 1420–1445 (2015a)
Bressloff, P.C., Lawley, S.D.: Stochastically gated diffusion-limited reactions for a small target in a bounded domain. Phys. Rev. E 92, 062117 (2015b)
Bressloff, P.C., Lawley, S.D.: Escape from a potential well with a randomly switching boundary. J. Phys. A 48, 225001 (2015c)
Bressloff, P.C., Lawley, S.D.: Hybrid colored noise process with space-dependent switching rates. Phys. Rev. E 96, 012129 (2017a)
Bressloff, P.C., Lawley, S.D.: Residence times of a Brownian particle with temporal heterogeneity. J. Phys. A 50, 195001 (2017b)
Bressloff, P.C., Lawley, S.D.: Temporal disorder as a mechanism for spatially heterogeneous diffusion. Phys. Rev. E Rapid Commun. 95, 060101 (2017c)
Bressloff, P.C., Lawley, S.D., Murphy, P.: Protein concentration gradients and switching diffusions. Phys. Rev. E 99, 032409 (2019)
Bressloff, P.C., Newby, J.M.: Stochastic models of intracellular transport. Rev. Mod. Phys. 85, 135–196 (2013)
Cairo, C.W., Mirchev, R., Golan, D.E.: Cytoskeletal regulation couples lfa-1 conformational changes to receptor lateral mobility and clustering. Immunity 25, 297–308 (2006)
Cheviakov, A.F., Ward, M.J., Straube, R.: An asymptotic analysis of the mean first passage time for narrow escape problems: Part II: The sphere. Multiscale Model. Simul. 8, 836–870 (2010)
Cheviakov, A.F., Ward, M.J.: Optimizing the principal eigenvalue of the Laplacian in a sphere with interior traps. Math. Comput. Model. 53, 1394–1409 (2011)
Coombs, D., Straube, R., Ward, M.: Diffusion on a sphere with localized traps: mean first passage time, eigenvalue asymptotics, and Fekete points. SIAM J. Appl. Math. 70, 302–332 (2009)
Cox, D.R.: Renewal Theory, vol. 1. Methuen, London (1967)
Das, R., Cairo, C.W., Coombs, D.: A hidden markov model for single particle tracks quantifies dynamic interactions between LFA-1 and the actin cytoskeleton. PLoS Comput. Biol. 5, e1000556 (2009)
Fabrikant, V.: Applications of Potential Theory in Mechanics: A Selection of New Results, vol. 51. Kluwer Academic Publishers, Dordrecht (1989)
Fogelson, B., Keener, J.P.: Enhanced nucleocytoplasmic transport due to competition for elastic binding sites. Biophys. J. 115, 108–116 (2018)
Folkmann, A.W., Seydoux, G.: Single-molecule study reveals the frenetic lives of proteins in gradients. Proc. Natl. Acad. Sci. 115, 9336–9338 (2018)
Gabel, A., Majumdar, S., Panduranga, N., Redner, S.: Can a lamb reach a haven before being eaten by diffusing lions? J. Stat. Mech. Theory Exp. 2012, P05011 (2012)
Giuggioli, L., Pérez-Becker, S., Sanders, D.P.: Encounter times in overlapping domains: application to epidemic spread in a population of territorial animals. Phys. Rev. Lett. 110, 058103 (2013)
Godec, A., Metzler, R.: First passage time statistics for two-channel diffusion. J. Phys. A 50, 084001 (2017)
Gomez, D., Cheviakov, A.F.: Asymptotic analysis of narrow escape problems in nonspherical three-dimensional domains. Phys. Rev. E 91, 012137 (2015)
Goychuk, I., Hänggi, P.: Fractional diffusion modeling of ion channel gating. Phys. Rev. E 70, 051915 (2004)
Grebenkov, D.S.: Time-averaged MSD for switching diffusion (2019). arXiv preprint arXiv:1903.04783
Grebenkov, D.S., Oshanin, G.: Diffusive escape through a narrow opening: new insights into a classic problem. Phys. Chem. Chem. Phys. 19, 2723–2739 (2017)
Helmholtz, H.: Theorie der luftschwingungen in röhren mit offenen enden. J. reine angew. Math. 57, 1–72 (1860)
Holcman, D., Schuss, Z.: The narrow escape problem. SIAM Rev. 56, 213–257 (2014a)
Holcman, D., Schuss, Z.: Time scale of diffusion in molecular and cellular biology. J. Phys. A 47, 173001 (2014b)
Hurtado, P.J., Kirosingh, A.S.: Generalizations of the ‘Linear Chain Trick’: incorporating more flexible dwell time distributions into mean field ODE models (2018). arXiv preprint arXiv:1808.07571
Jackson, J.D.: Classical Electrodynamics, 2nd edn. Wiley, New York (1975)
Karatzas, I., Shreve, S.: Brownian Motion and Stochastic Calculus, vol. 113. Springer, Berlin (2012)
Kloeden, P.E., Platen, E.: Numerical Solution of Stochastic Differential Equations, corrected edition edn. Springer, Berlin (1992)
Koo, P.K., Mochrie, S.G.J.: Systems-level approach to uncovering diffusive states and their transitions from single-particle trajectories. Phys. Rev. E 94, 052412 (2016)
Kurella, V., Tzou, J.C., Coombs, D., Ward, M.J.: Asymptotic analysis of first passage time problems inspired by ecology. Bull. Math. Biol. 77, 83–125 (2015)
Kuroiwa, T., Miyazaki, K.: Brownian motion with multiplicative noises revisited. J. Phys. A 47, 012001 (2013)
Lasker, K., von Diezmann, A., Ahrens, D.G., Mann, T.H., Moerner, W., Shapiro, L.: Phospho-signal flow from a pole-localized microdomain spatially patterns transcription factor activity, bioRxiv, p. 220293 (2017)
Lawley, S.D., Miles, C.E.: How receptor surface diffusion and cell rotation increase association rates. SIAM J. Appl. Math. 79, 1124–1146 (2019)
Lipkow, K., Odde, D.J.: Model for protein concentration gradients in the cytoplasm. Cell. Mol. Bioeng. 1, 84–92 (2008)
Mao, X., Yuan, C.: Stochastic Differential Equations with Markovian Switching. Imperial College Press, London (2006)
Mehra, V., Grassberger, P.: Trapping reaction with mobile traps. Phys. Rev. E 65, 050101 (2002)
Monnier, N.: Bayesian inference approaches for particle trajectory analysis in cell biology. Ph.D. thesis, Harvard University (2013)
Montiel, D., Cang, H., Yang, H.: Quantitative characterization of changes in dynamical behavior for single-particle tracking studies. J. Phys. Chem. B 110, 19763–19770 (2006)
Nelson, R.: Probability, Stochastic Processes, and Queueing Theory: The Mathematics of Computer Performance Modeling. Springer, Berlin (1995)
Oksendal, B.: Stochastic Differential Equations: An Introduction with Applications. Springer, Berlin (2003)
Persson, F., Lindén, M., Unoson, C., Elf, J.: Extracting intracellular diffusive states and transition rates from single-molecule tracking data. Nat. Methods 10, 265 (2013)
Ptashne, M.: A Genetic Switch: Phage Lambda Revisited, vol. 3. Cold Spring Harbor Laboratory Press, Cold Spring Harbor (2004)
Rayleigh, J.W.S.: The Theory of Sound. Dover Publications, Dover (1945)
Redner, S., Krapivsky, P.: Capture of the lamb: diffusing predators seeking a diffusing prey. Am. J. Phys. 67, 1277–1283 (1999)
Reingruber, J., Holcman, D.: Gated narrow escape time for molecular signaling. Phys. Rev. Lett. 103, 148102 (2009)
Reingruber, J., Holcman, D.: Narrow escape for a stochastically gated Brownian ligand. J. Phys. Condens. Matter. 22, 065103 (2010)
Saxton, M.J.: Lateral diffusion of lipids and proteins. Curr Top Membr 48, 229–282 (1999)
Skorokhod, A.V.: Asymptotic Methods in the Theory of Stochastic Differential Equations, reprint edition edn. American Mathematical Society, Providence (1989)
Slator, P.J., Burroughs, N.J.: A hidden Markov model for detecting confinement in single-particle tracking trajectories. Biophys. J. 115, 1741–1754 (2018)
Slator, P.J., Cairo, C.W., Burroughs, N.J.: Detection of diffusion heterogeneity in single particle tracking trajectories using a hidden markov model with measurement noise propagation. PLoS One 10, e0140759 (2015)
Sokolov, I., Schnörer, H., Blumen, A.: Diffusion-controlled reaction \({A}+{B}\rightarrow 0\) in one dimension: the role of particle mobilities and the diffusion-equation approach. Phys. Rev. A 44, 2388 (1991)
Tran, E.J., Wente, S.R.: Dynamic nuclear pore complexes: life on the edge. Cell 125, 1041–1053 (2006)
Tupper, P.F., Yang, X.: A paradox of state-dependent diffusion and how to resolve it. Proc. R. Soc. A 468, 3864–3881 (2012)
Tzou, J., Xie, S., Kolokolnikov, T.: First-passage times, mobile traps, and Hopf bifurcations. Phys. Rev. E 90, 062138 (2014)
Ward, M.J., Keller, J.B.: Strong localized perturbations of eigenvalue problems. SIAM J. Appl. Math. 53, 770–798 (1993)
Wu, Y., Han, B., Li, Y., Munro, E., Odde, D.J., Griffin, E.E.: Rapid diffusion-state switching underlies stable cytoplasmic gradients in the caenorhabditis elegans zygote. In: Proceedings of the National Academy of Sciences, p. 201722162 (2018)
Acknowledgements
SDL was supported by the National Science Foundation (DMS-1814832 and DMS-1148230). The support and resources from the Center for High Performance Computing at the University of Utah are gratefully acknowledged.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Dr. Paul Newton.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Lawley, S.D., Miles, C.E. Diffusive Search for Diffusing Targets with Fluctuating Diffusivity and Gating. J Nonlinear Sci 29, 2955–2985 (2019). https://doi.org/10.1007/s00332-019-09564-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00332-019-09564-1