Diffusive Search for Diffusing Targets with Fluctuating Diffusivity and Gating | Journal of Nonlinear Science Skip to main content
Log in

Diffusive Search for Diffusing Targets with Fluctuating Diffusivity and Gating

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

The time that it takes a diffusing particle to find a small target has emerged as a critical quantity in many systems in molecular and cellular biology. In this paper, we extend the theory for calculating this time to account for several ubiquitous biological features which have largely been ignored in the mathematics and physics literature on this problem. In particular, we allow (i) targets to diffuse on the two-dimensional boundary of the three-dimensional domain, (ii) targets to diffuse in the interior of the domain, (iii) the diffusivities of the searcher particle and the targets to stochastically fluctuate, (iv) targets to be stochastically gated, and (v) the transition times between fluctuations in diffusivity and gating to have effectively any probability distribution. In this general framework, we analytically calculate the leading order behavior of the mean first passage time and splitting probability for the searcher to reach a target as the target size decays, which is the so-called narrow escape limit. To make these extensions, we use a generalized Itô’s formula to derive a system of coupled partial differential equations which are satisfied by statistics of the process, where the size of the system and its spatial dimension can be arbitrarily large. We apply matched asymptotic analysis to this system and verify our analytical results by numerical simulation. Our results reveal several new features and generic principles of diffusive search for small targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Itô’s formula is the stochastic version of the chain rule (Oksendal 2003). The generalized Itô’s formula applies to SDEs with random switching. For more information, see Lemma 3 on page 104 of [59] or Lemma 1.9 on page 49 of Mao and Yuan (2006).

References

  • Alberts, B., Johnson, A.D., Lewis, J., Morgan, D., Raff, M., Roberts, K., Walter, P.: Molecular Biology of the Cell, 6th edn. W. W. Norton & Company, New York (2014)

    Google Scholar 

  • Ammari, H., Garnier, J., Kang, H., Lee, H., Sølna, K.: The mean escape time for a narrow escape problem with multiple switching gates. Multiscale Model. Simul. 9, 817–833 (2011)

    MathSciNet  MATH  Google Scholar 

  • Barrandon, C., Spiluttini, B., Bensaude, O.: Non-coding RNAs regulating the transcriptional machinery. Mol. Biol. Cell 100, 83–95 (2008)

    Google Scholar 

  • Bénichou, O., Voituriez, R.: Narrow-escape time problem: time needed for a particle to exit a confining domain through a small window. Phys. Rev. Lett. 100, 168105 (2008)

    Google Scholar 

  • Berg, H.C., Purcell, E.M.: Physics of chemoreception. Biophys. J. 20, 193–219 (1977)

    Google Scholar 

  • Borgdorff, A.J., Choquet, D.: Regulation of AMPA receptor lateral movements. Nature 417, 649 (2002)

    Google Scholar 

  • Bramson, M., Lebowitz, J.L.: Asymptotic behavior of densities in diffusion-dominated annihilation reactions. Phys. Rev. Lett. 61, 2397 (1988)

    Google Scholar 

  • Bray, A.J., Blythe, R.A.: Exact asymptotics for one-dimensional diffusion with mobile traps. Phys. Rev. Lett. 89, 150601 (2002)

    Google Scholar 

  • Bressloff, P.C., Lawley, S.D.: Escape from subcellular domains with randomly switching boundaries. Multiscale Model. Simul. 13, 1420–1445 (2015a)

    MathSciNet  MATH  Google Scholar 

  • Bressloff, P.C., Lawley, S.D.: Stochastically gated diffusion-limited reactions for a small target in a bounded domain. Phys. Rev. E 92, 062117 (2015b)

    MathSciNet  Google Scholar 

  • Bressloff, P.C., Lawley, S.D.: Escape from a potential well with a randomly switching boundary. J. Phys. A 48, 225001 (2015c)

    MathSciNet  MATH  Google Scholar 

  • Bressloff, P.C., Lawley, S.D.: Hybrid colored noise process with space-dependent switching rates. Phys. Rev. E 96, 012129 (2017a)

    Google Scholar 

  • Bressloff, P.C., Lawley, S.D.: Residence times of a Brownian particle with temporal heterogeneity. J. Phys. A 50, 195001 (2017b)

    MathSciNet  MATH  Google Scholar 

  • Bressloff, P.C., Lawley, S.D.: Temporal disorder as a mechanism for spatially heterogeneous diffusion. Phys. Rev. E Rapid Commun. 95, 060101 (2017c)

    Google Scholar 

  • Bressloff, P.C., Lawley, S.D., Murphy, P.: Protein concentration gradients and switching diffusions. Phys. Rev. E 99, 032409 (2019)

    Google Scholar 

  • Bressloff, P.C., Newby, J.M.: Stochastic models of intracellular transport. Rev. Mod. Phys. 85, 135–196 (2013)

    Google Scholar 

  • Cairo, C.W., Mirchev, R., Golan, D.E.: Cytoskeletal regulation couples lfa-1 conformational changes to receptor lateral mobility and clustering. Immunity 25, 297–308 (2006)

    Google Scholar 

  • Cheviakov, A.F., Ward, M.J., Straube, R.: An asymptotic analysis of the mean first passage time for narrow escape problems: Part II: The sphere. Multiscale Model. Simul. 8, 836–870 (2010)

    MathSciNet  MATH  Google Scholar 

  • Cheviakov, A.F., Ward, M.J.: Optimizing the principal eigenvalue of the Laplacian in a sphere with interior traps. Math. Comput. Model. 53, 1394–1409 (2011)

    MathSciNet  MATH  Google Scholar 

  • Coombs, D., Straube, R., Ward, M.: Diffusion on a sphere with localized traps: mean first passage time, eigenvalue asymptotics, and Fekete points. SIAM J. Appl. Math. 70, 302–332 (2009)

    MathSciNet  MATH  Google Scholar 

  • Cox, D.R.: Renewal Theory, vol. 1. Methuen, London (1967)

    MATH  Google Scholar 

  • Das, R., Cairo, C.W., Coombs, D.: A hidden markov model for single particle tracks quantifies dynamic interactions between LFA-1 and the actin cytoskeleton. PLoS Comput. Biol. 5, e1000556 (2009)

    MathSciNet  Google Scholar 

  • Fabrikant, V.: Applications of Potential Theory in Mechanics: A Selection of New Results, vol. 51. Kluwer Academic Publishers, Dordrecht (1989)

    MATH  Google Scholar 

  • Fogelson, B., Keener, J.P.: Enhanced nucleocytoplasmic transport due to competition for elastic binding sites. Biophys. J. 115, 108–116 (2018)

    Google Scholar 

  • Folkmann, A.W., Seydoux, G.: Single-molecule study reveals the frenetic lives of proteins in gradients. Proc. Natl. Acad. Sci. 115, 9336–9338 (2018)

    Google Scholar 

  • Gabel, A., Majumdar, S., Panduranga, N., Redner, S.: Can a lamb reach a haven before being eaten by diffusing lions? J. Stat. Mech. Theory Exp. 2012, P05011 (2012)

    Google Scholar 

  • Giuggioli, L., Pérez-Becker, S., Sanders, D.P.: Encounter times in overlapping domains: application to epidemic spread in a population of territorial animals. Phys. Rev. Lett. 110, 058103 (2013)

    Google Scholar 

  • Godec, A., Metzler, R.: First passage time statistics for two-channel diffusion. J. Phys. A 50, 084001 (2017)

    MathSciNet  MATH  Google Scholar 

  • Gomez, D., Cheviakov, A.F.: Asymptotic analysis of narrow escape problems in nonspherical three-dimensional domains. Phys. Rev. E 91, 012137 (2015)

    Google Scholar 

  • Goychuk, I., Hänggi, P.: Fractional diffusion modeling of ion channel gating. Phys. Rev. E 70, 051915 (2004)

    MathSciNet  Google Scholar 

  • Grebenkov, D.S.: Time-averaged MSD for switching diffusion (2019). arXiv preprint arXiv:1903.04783

  • Grebenkov, D.S., Oshanin, G.: Diffusive escape through a narrow opening: new insights into a classic problem. Phys. Chem. Chem. Phys. 19, 2723–2739 (2017)

    Google Scholar 

  • Helmholtz, H.: Theorie der luftschwingungen in röhren mit offenen enden. J. reine angew. Math. 57, 1–72 (1860)

    MathSciNet  Google Scholar 

  • Holcman, D., Schuss, Z.: The narrow escape problem. SIAM Rev. 56, 213–257 (2014a)

    MathSciNet  MATH  Google Scholar 

  • Holcman, D., Schuss, Z.: Time scale of diffusion in molecular and cellular biology. J. Phys. A 47, 173001 (2014b)

    MathSciNet  MATH  Google Scholar 

  • Hurtado, P.J., Kirosingh, A.S.: Generalizations of the ‘Linear Chain Trick’: incorporating more flexible dwell time distributions into mean field ODE models (2018). arXiv preprint arXiv:1808.07571

  • Jackson, J.D.: Classical Electrodynamics, 2nd edn. Wiley, New York (1975)

    MATH  Google Scholar 

  • Karatzas, I., Shreve, S.: Brownian Motion and Stochastic Calculus, vol. 113. Springer, Berlin (2012)

    MATH  Google Scholar 

  • Kloeden, P.E., Platen, E.: Numerical Solution of Stochastic Differential Equations, corrected edition edn. Springer, Berlin (1992)

    MATH  Google Scholar 

  • Koo, P.K., Mochrie, S.G.J.: Systems-level approach to uncovering diffusive states and their transitions from single-particle trajectories. Phys. Rev. E 94, 052412 (2016)

    Google Scholar 

  • Kurella, V., Tzou, J.C., Coombs, D., Ward, M.J.: Asymptotic analysis of first passage time problems inspired by ecology. Bull. Math. Biol. 77, 83–125 (2015)

    MathSciNet  MATH  Google Scholar 

  • Kuroiwa, T., Miyazaki, K.: Brownian motion with multiplicative noises revisited. J. Phys. A 47, 012001 (2013)

    MathSciNet  MATH  Google Scholar 

  • Lasker, K., von Diezmann, A., Ahrens, D.G., Mann, T.H., Moerner, W., Shapiro, L.: Phospho-signal flow from a pole-localized microdomain spatially patterns transcription factor activity, bioRxiv, p. 220293 (2017)

  • Lawley, S.D., Miles, C.E.: How receptor surface diffusion and cell rotation increase association rates. SIAM J. Appl. Math. 79, 1124–1146 (2019)

    MathSciNet  MATH  Google Scholar 

  • Lipkow, K., Odde, D.J.: Model for protein concentration gradients in the cytoplasm. Cell. Mol. Bioeng. 1, 84–92 (2008)

    Google Scholar 

  • Mao, X., Yuan, C.: Stochastic Differential Equations with Markovian Switching. Imperial College Press, London (2006)

    MATH  Google Scholar 

  • Mehra, V., Grassberger, P.: Trapping reaction with mobile traps. Phys. Rev. E 65, 050101 (2002)

    Google Scholar 

  • Monnier, N.: Bayesian inference approaches for particle trajectory analysis in cell biology. Ph.D. thesis, Harvard University (2013)

  • Montiel, D., Cang, H., Yang, H.: Quantitative characterization of changes in dynamical behavior for single-particle tracking studies. J. Phys. Chem. B 110, 19763–19770 (2006)

    Google Scholar 

  • Nelson, R.: Probability, Stochastic Processes, and Queueing Theory: The Mathematics of Computer Performance Modeling. Springer, Berlin (1995)

    MATH  Google Scholar 

  • Oksendal, B.: Stochastic Differential Equations: An Introduction with Applications. Springer, Berlin (2003)

    MATH  Google Scholar 

  • Persson, F., Lindén, M., Unoson, C., Elf, J.: Extracting intracellular diffusive states and transition rates from single-molecule tracking data. Nat. Methods 10, 265 (2013)

    Google Scholar 

  • Ptashne, M.: A Genetic Switch: Phage Lambda Revisited, vol. 3. Cold Spring Harbor Laboratory Press, Cold Spring Harbor (2004)

    Google Scholar 

  • Rayleigh, J.W.S.: The Theory of Sound. Dover Publications, Dover (1945)

    MATH  Google Scholar 

  • Redner, S., Krapivsky, P.: Capture of the lamb: diffusing predators seeking a diffusing prey. Am. J. Phys. 67, 1277–1283 (1999)

    Google Scholar 

  • Reingruber, J., Holcman, D.: Gated narrow escape time for molecular signaling. Phys. Rev. Lett. 103, 148102 (2009)

    Google Scholar 

  • Reingruber, J., Holcman, D.: Narrow escape for a stochastically gated Brownian ligand. J. Phys. Condens. Matter. 22, 065103 (2010)

    Google Scholar 

  • Saxton, M.J.: Lateral diffusion of lipids and proteins. Curr Top Membr 48, 229–282 (1999)

    Google Scholar 

  • Skorokhod, A.V.: Asymptotic Methods in the Theory of Stochastic Differential Equations, reprint edition edn. American Mathematical Society, Providence (1989)

    MATH  Google Scholar 

  • Slator, P.J., Burroughs, N.J.: A hidden Markov model for detecting confinement in single-particle tracking trajectories. Biophys. J. 115, 1741–1754 (2018)

    Google Scholar 

  • Slator, P.J., Cairo, C.W., Burroughs, N.J.: Detection of diffusion heterogeneity in single particle tracking trajectories using a hidden markov model with measurement noise propagation. PLoS One 10, e0140759 (2015)

    Google Scholar 

  • Sokolov, I., Schnörer, H., Blumen, A.: Diffusion-controlled reaction \({A}+{B}\rightarrow 0\) in one dimension: the role of particle mobilities and the diffusion-equation approach. Phys. Rev. A 44, 2388 (1991)

    Google Scholar 

  • Tran, E.J., Wente, S.R.: Dynamic nuclear pore complexes: life on the edge. Cell 125, 1041–1053 (2006)

    Google Scholar 

  • Tupper, P.F., Yang, X.: A paradox of state-dependent diffusion and how to resolve it. Proc. R. Soc. A 468, 3864–3881 (2012)

    MathSciNet  MATH  Google Scholar 

  • Tzou, J., Xie, S., Kolokolnikov, T.: First-passage times, mobile traps, and Hopf bifurcations. Phys. Rev. E 90, 062138 (2014)

    Google Scholar 

  • Ward, M.J., Keller, J.B.: Strong localized perturbations of eigenvalue problems. SIAM J. Appl. Math. 53, 770–798 (1993)

    MathSciNet  MATH  Google Scholar 

  • Wu, Y., Han, B., Li, Y., Munro, E., Odde, D.J., Griffin, E.E.: Rapid diffusion-state switching underlies stable cytoplasmic gradients in the caenorhabditis elegans zygote. In: Proceedings of the National Academy of Sciences, p. 201722162 (2018)

Download references

Acknowledgements

SDL was supported by the National Science Foundation (DMS-1814832 and DMS-1148230). The support and resources from the Center for High Performance Computing at the University of Utah are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sean D. Lawley.

Additional information

Communicated by Dr. Paul Newton.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lawley, S.D., Miles, C.E. Diffusive Search for Diffusing Targets with Fluctuating Diffusivity and Gating. J Nonlinear Sci 29, 2955–2985 (2019). https://doi.org/10.1007/s00332-019-09564-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-019-09564-1

Keywords

Mathematics Subject Classification

Navigation