Koopman Operator Framework for Time Series Modeling and Analysis | Journal of Nonlinear Science Skip to main content
Log in

Koopman Operator Framework for Time Series Modeling and Analysis

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

We propose an interdisciplinary framework for time series classification, forecasting, and anomaly detection by combining concepts from Koopman operator theory, machine learning, and linear systems and control theory. At the core of this framework is nonlinear dynamic generative modeling of time series using the Koopman operator which is an infinite-dimensional but linear operator. Rather than working with the underlying nonlinear model, we propose two simpler linear representations or model forms based on Koopman spectral properties. We show that these model forms are invariants of the generative model and can be readily identified directly from data using techniques for computing Koopman spectral properties without requiring the explicit knowledge of the generative model. We also introduce different notions of distances on the space of such model forms which is essential for model comparison/clustering. We employ the space of Koopman model forms equipped with distance in conjunction with classical machine learning techniques to develop a framework for automatic feature generation for time series classification. The forecasting/anomaly detection framework is based on using Koopman model forms along with classical linear systems and control approaches. We demonstrate the proposed framework for human activity classification, and for time series forecasting/anomaly detection in power grid application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Afsari, B., Vidal, R.: The alignment distance on spaces of linear dynamical systems. In: 52nd IEEE Conference on Decision and Control, pp. 1162–1167. IEEE (2013)

  • Ali, S., Basharat, A., Shah, M.: Chaotic invariants for human action recognition. In: 2007 IEEE 11th International Conference on Computer Vision, pp. 1–8. IEEE (2007)

  • Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: Human activity recognition on smartphones using a multiclass hardware-friendly support vector machine. In: International Workshop on Ambient Assisted Living, pp. 216–223. Springer, Berlin (2012)

  • Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: ESANN (2013)

  • Atzori, L., Iera, A., Morabito, G.: The internet of things: a survey. Comput. Netw. 54(15), 2787–2805 (2010)

    MATH  Google Scholar 

  • Basharat, A., Shah, M.: Time series prediction by chaotic modeling of nonlinear dynamical systems. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 1941–1948. IEEE (2009)

  • Benamou, J.-D., Brenier, Y.: A computational fluid mechanics solution to the Monge–Kantorovich mass transfer problem. Numer. Math. 84(3), 375–393 (2000)

    MathSciNet  MATH  Google Scholar 

  • Billings, S.A.: Nonlinear System Identification: NARMAX Methods in the Time, Frequency, and Spatio-Temporal Domains. Wiley, New York (2013)

    MATH  Google Scholar 

  • Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. J. Mach. Learn. Res. 3(Jan), 993–1022 (2003)

    MATH  Google Scholar 

  • Borg, I., Groenen, P.: Modern Multidimensional Scaling: Theory and Applications. Springer, New York (2005)

    MATH  Google Scholar 

  • Brockwell, P.J., Davis, R.A.: Introduction to Time Series and Forecasting. Springer, Berlin (2006)

    MATH  Google Scholar 

  • Broomhead, D.S., Jones, R.: Time-series analysis. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 423, pp. 103–121. The Royal Society (1989)

  • Brunton, S.L., Proctor, J.L., Tu, J.H., Kutz, J.N.: Compressed sensing and dynamic mode decomposition. J. Comput. Dyn. 2(2), 165–191 (2015)

    MathSciNet  MATH  Google Scholar 

  • Brunton, B.W., Johnson, L.A., Ojemann, J.G., Nathan Kutz, J.: Extracting spatial-temporal coherent patterns in large-scale neural recordings using dynamic mode decomposition. J. Neurosci. Methods 258, 1–15 (2016a)

    Google Scholar 

  • Brunton, S.L., Brunton, B.W., Proctor, J.L., Kaiser, E., Kutz, J.N.: Chaos as an Intermittently Forced Linear System (2016b). arXiv preprint arXiv:1608.05306

  • Brunton, S.L., Brunton, B.W., Proctor, J.L., Nathan Kutz, J.: Koopman invariant subspaces and finite linear representations of nonlinear dynamical systems for control. PLoS ONE 11(2), e0150171 (2016c)

    Google Scholar 

  • Budisic, M., Mezic, I.: Geometry of the ergodic quotient reveals coherent structures in flows. Phys. D: Nonlinear Phenom. 241(15), 1255–1269 (2012)

    MathSciNet  MATH  Google Scholar 

  • Budisic, M., Mohr, R.M., Mezic, I.: Applied koopmanism. Chaos 22, 047510 (2012)

    MathSciNet  MATH  Google Scholar 

  • Chen, K.K., Tu, J.H., Rowley, C.W.: Variants of dynamic mode decomposition: connections between Koopman and Fourier analyses. J. Nonlinear Sci. 6(22), 887–915 (2012)

    MATH  Google Scholar 

  • Coifman, R.R., Lafon, S.: Diffusion maps. Appl. Comput. Harmonic Anal. 21(1), 5–30 (2006)

    MathSciNet  MATH  Google Scholar 

  • Crutchfield, J.P., McNamara, B.S.: Equations of motion from a data series. Complex Syst. 1(417–452), 121 (1987)

    MathSciNet  MATH  Google Scholar 

  • Csurka, G., Dance, C.R., Fan, L., Willamowski, J., Bray, C.: Visual categorization with bags of keypoints. In: Workshop on Statistical Learning in Computer Vision, ECCV, pp. 1–22 (2004)

  • De Cock, K., De Moor, B.: Subspace angles between arma models. Syst. Control Lett. 46(4), 265–270 (2002)

    MathSciNet  MATH  Google Scholar 

  • De Persis, C., Isidori, A.: A geometric approach to nonlinear fault detection and isolation. IEEE Trans. Autom. Control 46(6), 853–865 (2001)

    MathSciNet  MATH  Google Scholar 

  • Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. Wiley, New York (2012)

    MATH  Google Scholar 

  • Eisenhower, B., Maile, T., Fischer, M., Mezic, I.: Decomposing building system data for model validation and analysis using the Koopman operator. In: Fourth National Conference of IBPSA-USA (2010)

  • El-Sakkary, A.: The gap metric: robustness of stabilization of feedback systems. IEEE Trans. Autom. Control 30(3), 240–247 (1985)

    MathSciNet  MATH  Google Scholar 

  • Fei-Fei, L., Perona, P.: A Bayesian hierarchical model for learning natural scene categories. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), vol. 2, pp. 524–531. IEEE (2005)

  • Frank, J., Mannor, S., Precup, D.: Activity and gait recognition with time-delay embeddings. In: AAAI. Citeseer (2010)

  • Froyland, G., González-Tokman, C., Quas, A.: Detecting isolated spectrum of transfer and Koopman operators with fourier analytic tools. J. Comput. Dyn. 1(2), 249–278 (2014)

    MathSciNet  MATH  Google Scholar 

  • Garcia, A.E., Frank, P.M.: Deterministic nonlinear observer-based approaches to fault diagnosis: a survey. Control Eng. Pract. 5(5), 663–670 (1997)

    Google Scholar 

  • Georgiou, T.T.: Distances Between Power Spectral Densities (2006). arXiv preprint arXiv:math/0607026

  • Georgiou, T.T., Karlsson, J., Takyar, M.S.: Metrics for power spectra: an axiomatic approach. IEEE Trans. Signal Process. 57(3), 859–867 (2009)

    MathSciNet  MATH  Google Scholar 

  • Giannakis, D., Slawinska, J., Zhao, Z.: Spatiotemporal feature extraction with data-driven Koopman operators. In: Journal of Machine Learning Research, Proceedings of the 1st International Workshop on Feature Extraction: Modern Questions and Challenges and NIPS Conference, vol. 44, pp. 103–115 (2015)

  • Glover, K.: All optimal hankel-norm approximations of linear multivariable systems and their L, \(\infty \)-error bounds. Int. J. Control 39(6), 1115–1193 (1984)

    MathSciNet  MATH  Google Scholar 

  • Grosek, J., Kutz, J.N.: Dynamic mode decomposition for real-time background/foreground separation in video (2014). arXiv preprint arXiv:1404.7529 [cs.CV]

  • Hannan, E.J., Deistler, M.: The Statistical Theory of Linear Systems, vol. 70. SIAM, Philadelphia (1988)

    MATH  Google Scholar 

  • Hanzon, B., Marcus, S.I.: Riemannian metrics on spaces of stable linear systems, with applications to identification. In: IEEE Conference on Decision & Control, pp. 1119–1124 (1982)

  • Hemati, M.S., Williams, M.O., Rowley, C.W.: Dynamic mode decomposition for large and streaming datasets. Phys. Fluids 26, 111701 (2014)

    Google Scholar 

  • Hwang, I., Kim, S., Kim, Y., Seah, C.E.: A survey of fault detection, isolation, and reconfiguration methods. IEEE Trans. Control Syst. Technol. 18(3), 636–653 (2010)

    Google Scholar 

  • John Lu, Z.Q.: The elements of statistical learning: data mining, inference, and prediction. J. R. Stat. Soc.: Ser. A (Stat. Soc.) 173(3), 693–694 (2010)

    Google Scholar 

  • Jovanovic, M.R., Schmid, P.J., Nichols, J.W.: Sparsity-promoting dynamic mode decomposition. Phys. Fluids 26, 024103 (2014)

    Google Scholar 

  • Juang, J.-N., Pappa, R.S.: An eigensystem realization algorithm for modal parameter identification and model reduction. J. Guid. Control Dyn. 8(5), 620–627 (1985)

    MATH  Google Scholar 

  • Kantz, H., Schreiber, T.: Nonlinear Time Series Analysis, vol. 7. Cambridge university press, Cambridge (2004)

    MATH  Google Scholar 

  • Kaufman, L., Rousseeuw, P.J.: Finding Groups in Data: An Introduction to Cluster Analysis, vol. 344. Wiley, New York (2009)

    MATH  Google Scholar 

  • Kehoe, B., Patil, S., Abbeel, P., Goldberg, K.: A survey of research on cloud robotics and automation. IEEE Trans. Autom. Sci. Eng. 12(2), 398–409 (2015)

    Google Scholar 

  • Koopman, B.O.: Hamiltonian systems and transformation in Hilbert space. Proc. Natl. Acad. Sci. 17(5), 315–318 (1931)

    MATH  Google Scholar 

  • Korda, M., Mezić, I.: Linear Predictors for Nonlinear Dynamical Systems: Koopman Operator Meets Model Predictive Control. (2016) arXiv preprint arXiv:1611.03537

  • Krishnaprasad, P.S.: Geometry of Minimal Systems and the Identification Problem. Harvard University Press, Harvard (1977)

    Google Scholar 

  • Kutz, J.N., Fu, X., Brunton, S.L.: Multiresolution dynamic mode decomposition. SIAM J. Appl. Dyn. Syst. 15(2), 713–735 (2016)

    MathSciNet  MATH  Google Scholar 

  • Lebanon, G., Mao, Y., Dillon, J.: The locally weighted bag of words framework for document representation. J. Mach. Learn. Res. 8(Oct), 2405–2441 (2007)

    MathSciNet  MATH  Google Scholar 

  • LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Google Scholar 

  • Lester, J., Choudhury, T., Borriello, G.: A practical approach to recognizing physical activities. In: International Conference on Pervasive Computing, pp. 1–16. Springer, Berlin (2006)

  • Ljung, L.: System identification. In: Procházka, A., Uhlí\(\tilde{\rm r}\), J., Rayner, P.W.J., Kingsbury, N.G. (eds.) Signal Analysis and Prediction. Applied and Numerical Harmonic Analysis. Birkhäuser, Boston, MA (1998)

  • Martin, R.J.: A metric for arma processes. IEEE Trans. Signal Process. 48(4), 1164–1170 (2000)

    MathSciNet  MATH  Google Scholar 

  • Mauroy, A., Goncalves, J.: Linear identification of nonlinear systems: a lifting technique based on the Koopman operator. In: CDC, pp. 6500–6505 (2016)

  • Mauroy, A., Hendrickx, J.: Spectral Identification of Networks Using Sparse Measurements (2016). arXiv preprint arXiv:1601.04364

  • Mauroy, A., Mezic, I.: Global Stability Analysis Using the Eigenfunctions of the Koopman Operator (2015). arXiv preprint arXiv:1408.1379

  • Mauroy, A., Mezić, I., Moehlis, J.: Isostables, isochrons, and koopman spectrum for the action-angle representation of stable fixed point dynamics. Phys. D: Nonlinear Phenom. 261, 19–30 (2013)

    MathSciNet  MATH  Google Scholar 

  • Maybeck, P.S.: Multiple model adaptive algorithms for detecting and compensating sensor and actuator/surface failures in aircraft flight control systems. Int. J. Robust Nonlinear Control 9(14), 1051–1070 (1999)

    Google Scholar 

  • Mezic, I.: Spectral properties of dynamical systems, model reduction and decompositions. Nonlinear Dyn. 41(1–3), 309–325 (2005)

    MathSciNet  MATH  Google Scholar 

  • Mezic, I.: Analysis of fluid flows via spectral properties of the Koopman operator. Annu. Rev. Fluid Mech. 45, 357–378 (2012)

    MathSciNet  MATH  Google Scholar 

  • Mezic, I.: Spectral Operator Methods in Dynamical Systems: Theory and Applications (in preparation) (2017)

  • Mezić, I., Banaszuk, A.: Comparison of systems with complex behavior. Phys. D 197, 101–133 (2004)

    MathSciNet  MATH  Google Scholar 

  • Mezic, I., Surana, A.: Koopman mode decomposition for periodic/quasi-periodic time dependence. IFAC-PapersOnLine 49(18), 690–697 (2016)

    Google Scholar 

  • Mezić, I., Wiggins, S.: A method for visualization of invariant sets of dynamical systems based on the ergodic partition. Chaos: Interdiscip. J. Nonlinear Sci. 9(1), 213–218 (1999)

    MathSciNet  MATH  Google Scholar 

  • Nelles, O.: Nonlinear System Identification: From Classical Approaches to Neural Networks and Fuzzy Models. Springer, Berlin (2013)

    MATH  Google Scholar 

  • Niebles, J.C., Wang, H., Fei-Fei, L.: Unsupervised learning of human action categories using spatial-temporal words. Int. J. Comput. Vis. 79(3), 299–318 (2008)

    Google Scholar 

  • Paoletti, S., Juloski, A.L., Ferrari-Trecate, G., Vidal, R.: Identification of hybrid systems a tutorial. Eur. J. Control 13(2), 242–260 (2007)

    MATH  Google Scholar 

  • Pourbabaee, B., Meskin, N., Khorasani, K.: Sensor fault detection, isolation, and identification using multiple-model-based hybrid kalman filter for gas turbine engines. IEEE Trans. Control Syst. Technol. 24(4), 1184–1200 (2016)

    Google Scholar 

  • Proctor, J.L., Brunton, S.L., Kutz, J.N.: Dynamic mode decomposition with control. SIAM J. Appl. Dyn. Syst. 15(1), 142–161 (2016)

    MathSciNet  MATH  Google Scholar 

  • Ravichandran, A., Chaudhry, R., Vidal, R.: Categorizing dynamic textures using a bag of dynamical systems. IEEE Trans. Pattern Anal. Mach. Intell. 35(2), 342–353 (2013)

    Google Scholar 

  • Rowley, C., Mezic, I., Bagheri, S., Schlatter, P., Henningson, D.S.: Spectral Analysis of Nonlinear Flows. J. Fluid Mech. 641, 115–127 (2009)

    MathSciNet  MATH  Google Scholar 

  • Rubner, Y., Tomasi, C., Guibas, L.J.: The Earth mover’s distance as a metric for image retrieval. Int. J. Comput. Vis. 40(2), 99–121 (2000)

    MATH  Google Scholar 

  • Sauer, T., Yorke, J.A., Casdagli, M.: Embedology. J. Stat. Phys. 65(3–4), 579–616 (1991)

    MathSciNet  MATH  Google Scholar 

  • Schmid, P.J.: Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 656, 5–28 (2010)

    MathSciNet  MATH  Google Scholar 

  • Sivic, J., Zisserman, A.: Video google: a text retrieval approach to object matching in videos. In: Proceedings of the Ninth IEEE International Conference on Computer Vision, 2003, pp. 1470–1477. IEEE (2003)

  • Solomon, J., Rustamov, R., Guibas, L., Butscher, A.: Earth mover’s distances on discrete surfaces. ACM Trans. Graph. 33(4), 67 (2014)

    MATH  Google Scholar 

  • Sootla, A., Mauroy, A.: Operator-Theoretic Characterization of Eventually Monotone Systems (2015). arXiv preprint arXiv:1510.01149

  • Subramanya, A., Raj, A., Bilmes, J.A., Fox, D.: Recognizing Activities and Spatial Context Using Wearable Sensors (2012). arXiv preprint arXiv:1206.6869

  • Sugihara, G., May, R.M.: Nonlinear forecasting: an operational way to distinguish chaos from measurement error. Nature 344, 734–741 (1990)

    Google Scholar 

  • Sugihara, G., May, R., Ye, H., Hsieh, C., Deyle, E., Fogarty, M., Munch, S.: Detecting causality in complex ecosystems. Science 338(6106), 496–500 (2012)

    MATH  Google Scholar 

  • Surana, A.: Koopman operator based nonlinear dynamic textures. In: ACC, pp. 1333–1338 (2015)

  • Surana, A.: Koopman operator framework for observer synthesis for input–output nonlinear systems with control-affine inputs. In: IEEE CDC (2016)

  • Surana, A., Banaszuk, A.: Linear observer synthesis for nonlinear systems using Koopman operator framework. IFAC-PapersOnLine 49(18), 716–723 (2016)

    Google Scholar 

  • Susuki, Y., Mezic, I.: Nonlinear Koopman modes and power system stability assessment without models. IEEE Trans. Power Syst. 29(2), 899–907 (2014)

    Google Scholar 

  • Susuki, Y., Mezic, I., Hikihara, T.: Global swing instability in the New England power grid model. In: 2009 American Control Conference, pp. 3446–3451. IEEE (2009)

  • Susuki, Y., Mezic, I., Hikihara, T.: Coherent swing instability of power grids. J. Nonlinear Sci. 21(3), 403–439 (2011)

    MathSciNet  MATH  Google Scholar 

  • Takens, F.: Detecting strange attractors in turbulence. In: Dynamical Systems and Turbulence, Warwick 1980, pp. 366–381. Springer, Berlin (1981)

  • Tu, J.H., Rowley, C.W., Kutz, J.N., Shang, J.K.: Spectral analysis of fluid flows using sub-Nyquist-rate PIV data. Exp. Fluids 55(9), 1–13 (2014a)

    Google Scholar 

  • Tu, J.H., Rowley, C.W., Luchtenburg, D.M., Brunton, S.L., Kutz, J.N.: On dynamic mode decomposition: theory and applications. J. Comp. Dyn. 2(1), 391–421 (2014b)

    MathSciNet  MATH  Google Scholar 

  • van der Maaten, L.J.P., Postma, E.O., van den Herik, H.J.: Dimensionality Reduction: A Comparative Review. Tilburg University Technical Report, TiCC-TR 2009-005 (2009)

  • Vapnik, V.N., Vapnik, V.: Statistical Learning Theory, vol. 1. Wiley, New York (1998)

    MATH  Google Scholar 

  • Venkatasubramanian, V., Rengaswamy, R., Yin, K., Kavuri, S.N.: A review of process fault detection and diagnosis: part i: quantitative model-based methods. Comput. Chem. Eng. 27(3), 293–311 (2003)

    Google Scholar 

  • Vidal, R., Soatto, S., Chiuso, A.: Applications of hybrid system identification in computer vision. In: Proceedings of the European Control Conference, Kos, Greece (2007)

  • Vishwanathan, S.V.N., Smola, A.J., Vidal, R.: Binet–Cauchy kernels on dynamical systems and its application to the analysis of dynamic scenes. Int. J. Comput. Vis. 73(1), 95–119 (2007)

    Google Scholar 

  • Williams, M.O., Rowley, C.W., Kevrekidis, I.G.: A Kernel-Based Approach to Data-Driven Koopman Spectral Analysis (2014). arXiv preprint arXiv:1411.2260

  • Williams, M.O., Kevrekidis, I.G., Rowley, C.W.: A data-driven approximation of the Koopman operator: extending dynamic mode decomposition. J. Nonlinear Sci. 25(6), 1307–1346 (2015a)

    MathSciNet  MATH  Google Scholar 

  • Williams, M.O., Rowley, C.W., Mezić, I., Kevrekidis, I.G.: Data fusion via intrinsic dynamic variables: an application of data-driven koopman spectral analysis. Europhys. Lett. 109(4), 40007 (2015b)

    Google Scholar 

  • Xu, A., Zhang, Q.: Nonlinear system fault diagnosis based on adaptive estimation. Automatica 40(7), 1181–1193 (2004)

    MathSciNet  MATH  Google Scholar 

  • Yen, G.G., Ho, L.-W.: Online multiple-model-based fault diagnosis and accommodation. IEEE Trans. Ind. Electron. 50(2), 296–312 (2003)

    Google Scholar 

Download references

Acknowledgements

Funding provided by United Technologies Research Center is greatly appreciated. The author would like to thank Matthew Williams, Milos Ilak, and Andrzej Banaszuk for careful reading of the manuscript and valuable feedback.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Surana.

Additional information

Communicated by Clancy Rowley and Ioannis Kevrekidis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Surana, A. Koopman Operator Framework for Time Series Modeling and Analysis. J Nonlinear Sci 30, 1973–2006 (2020). https://doi.org/10.1007/s00332-017-9441-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-017-9441-y

Keywords

Mathematics Subject Classification

Navigation