Abstract
We propose an interdisciplinary framework for time series classification, forecasting, and anomaly detection by combining concepts from Koopman operator theory, machine learning, and linear systems and control theory. At the core of this framework is nonlinear dynamic generative modeling of time series using the Koopman operator which is an infinite-dimensional but linear operator. Rather than working with the underlying nonlinear model, we propose two simpler linear representations or model forms based on Koopman spectral properties. We show that these model forms are invariants of the generative model and can be readily identified directly from data using techniques for computing Koopman spectral properties without requiring the explicit knowledge of the generative model. We also introduce different notions of distances on the space of such model forms which is essential for model comparison/clustering. We employ the space of Koopman model forms equipped with distance in conjunction with classical machine learning techniques to develop a framework for automatic feature generation for time series classification. The forecasting/anomaly detection framework is based on using Koopman model forms along with classical linear systems and control approaches. We demonstrate the proposed framework for human activity classification, and for time series forecasting/anomaly detection in power grid application.
Similar content being viewed by others
References
Afsari, B., Vidal, R.: The alignment distance on spaces of linear dynamical systems. In: 52nd IEEE Conference on Decision and Control, pp. 1162–1167. IEEE (2013)
Ali, S., Basharat, A., Shah, M.: Chaotic invariants for human action recognition. In: 2007 IEEE 11th International Conference on Computer Vision, pp. 1–8. IEEE (2007)
Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: Human activity recognition on smartphones using a multiclass hardware-friendly support vector machine. In: International Workshop on Ambient Assisted Living, pp. 216–223. Springer, Berlin (2012)
Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: ESANN (2013)
Atzori, L., Iera, A., Morabito, G.: The internet of things: a survey. Comput. Netw. 54(15), 2787–2805 (2010)
Basharat, A., Shah, M.: Time series prediction by chaotic modeling of nonlinear dynamical systems. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 1941–1948. IEEE (2009)
Benamou, J.-D., Brenier, Y.: A computational fluid mechanics solution to the Monge–Kantorovich mass transfer problem. Numer. Math. 84(3), 375–393 (2000)
Billings, S.A.: Nonlinear System Identification: NARMAX Methods in the Time, Frequency, and Spatio-Temporal Domains. Wiley, New York (2013)
Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. J. Mach. Learn. Res. 3(Jan), 993–1022 (2003)
Borg, I., Groenen, P.: Modern Multidimensional Scaling: Theory and Applications. Springer, New York (2005)
Brockwell, P.J., Davis, R.A.: Introduction to Time Series and Forecasting. Springer, Berlin (2006)
Broomhead, D.S., Jones, R.: Time-series analysis. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 423, pp. 103–121. The Royal Society (1989)
Brunton, S.L., Proctor, J.L., Tu, J.H., Kutz, J.N.: Compressed sensing and dynamic mode decomposition. J. Comput. Dyn. 2(2), 165–191 (2015)
Brunton, B.W., Johnson, L.A., Ojemann, J.G., Nathan Kutz, J.: Extracting spatial-temporal coherent patterns in large-scale neural recordings using dynamic mode decomposition. J. Neurosci. Methods 258, 1–15 (2016a)
Brunton, S.L., Brunton, B.W., Proctor, J.L., Kaiser, E., Kutz, J.N.: Chaos as an Intermittently Forced Linear System (2016b). arXiv preprint arXiv:1608.05306
Brunton, S.L., Brunton, B.W., Proctor, J.L., Nathan Kutz, J.: Koopman invariant subspaces and finite linear representations of nonlinear dynamical systems for control. PLoS ONE 11(2), e0150171 (2016c)
Budisic, M., Mezic, I.: Geometry of the ergodic quotient reveals coherent structures in flows. Phys. D: Nonlinear Phenom. 241(15), 1255–1269 (2012)
Budisic, M., Mohr, R.M., Mezic, I.: Applied koopmanism. Chaos 22, 047510 (2012)
Chen, K.K., Tu, J.H., Rowley, C.W.: Variants of dynamic mode decomposition: connections between Koopman and Fourier analyses. J. Nonlinear Sci. 6(22), 887–915 (2012)
Coifman, R.R., Lafon, S.: Diffusion maps. Appl. Comput. Harmonic Anal. 21(1), 5–30 (2006)
Crutchfield, J.P., McNamara, B.S.: Equations of motion from a data series. Complex Syst. 1(417–452), 121 (1987)
Csurka, G., Dance, C.R., Fan, L., Willamowski, J., Bray, C.: Visual categorization with bags of keypoints. In: Workshop on Statistical Learning in Computer Vision, ECCV, pp. 1–22 (2004)
De Cock, K., De Moor, B.: Subspace angles between arma models. Syst. Control Lett. 46(4), 265–270 (2002)
De Persis, C., Isidori, A.: A geometric approach to nonlinear fault detection and isolation. IEEE Trans. Autom. Control 46(6), 853–865 (2001)
Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. Wiley, New York (2012)
Eisenhower, B., Maile, T., Fischer, M., Mezic, I.: Decomposing building system data for model validation and analysis using the Koopman operator. In: Fourth National Conference of IBPSA-USA (2010)
El-Sakkary, A.: The gap metric: robustness of stabilization of feedback systems. IEEE Trans. Autom. Control 30(3), 240–247 (1985)
Fei-Fei, L., Perona, P.: A Bayesian hierarchical model for learning natural scene categories. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), vol. 2, pp. 524–531. IEEE (2005)
Frank, J., Mannor, S., Precup, D.: Activity and gait recognition with time-delay embeddings. In: AAAI. Citeseer (2010)
Froyland, G., González-Tokman, C., Quas, A.: Detecting isolated spectrum of transfer and Koopman operators with fourier analytic tools. J. Comput. Dyn. 1(2), 249–278 (2014)
Garcia, A.E., Frank, P.M.: Deterministic nonlinear observer-based approaches to fault diagnosis: a survey. Control Eng. Pract. 5(5), 663–670 (1997)
Georgiou, T.T.: Distances Between Power Spectral Densities (2006). arXiv preprint arXiv:math/0607026
Georgiou, T.T., Karlsson, J., Takyar, M.S.: Metrics for power spectra: an axiomatic approach. IEEE Trans. Signal Process. 57(3), 859–867 (2009)
Giannakis, D., Slawinska, J., Zhao, Z.: Spatiotemporal feature extraction with data-driven Koopman operators. In: Journal of Machine Learning Research, Proceedings of the 1st International Workshop on Feature Extraction: Modern Questions and Challenges and NIPS Conference, vol. 44, pp. 103–115 (2015)
Glover, K.: All optimal hankel-norm approximations of linear multivariable systems and their L, \(\infty \)-error bounds. Int. J. Control 39(6), 1115–1193 (1984)
Grosek, J., Kutz, J.N.: Dynamic mode decomposition for real-time background/foreground separation in video (2014). arXiv preprint arXiv:1404.7529 [cs.CV]
Hannan, E.J., Deistler, M.: The Statistical Theory of Linear Systems, vol. 70. SIAM, Philadelphia (1988)
Hanzon, B., Marcus, S.I.: Riemannian metrics on spaces of stable linear systems, with applications to identification. In: IEEE Conference on Decision & Control, pp. 1119–1124 (1982)
Hemati, M.S., Williams, M.O., Rowley, C.W.: Dynamic mode decomposition for large and streaming datasets. Phys. Fluids 26, 111701 (2014)
Hwang, I., Kim, S., Kim, Y., Seah, C.E.: A survey of fault detection, isolation, and reconfiguration methods. IEEE Trans. Control Syst. Technol. 18(3), 636–653 (2010)
John Lu, Z.Q.: The elements of statistical learning: data mining, inference, and prediction. J. R. Stat. Soc.: Ser. A (Stat. Soc.) 173(3), 693–694 (2010)
Jovanovic, M.R., Schmid, P.J., Nichols, J.W.: Sparsity-promoting dynamic mode decomposition. Phys. Fluids 26, 024103 (2014)
Juang, J.-N., Pappa, R.S.: An eigensystem realization algorithm for modal parameter identification and model reduction. J. Guid. Control Dyn. 8(5), 620–627 (1985)
Kantz, H., Schreiber, T.: Nonlinear Time Series Analysis, vol. 7. Cambridge university press, Cambridge (2004)
Kaufman, L., Rousseeuw, P.J.: Finding Groups in Data: An Introduction to Cluster Analysis, vol. 344. Wiley, New York (2009)
Kehoe, B., Patil, S., Abbeel, P., Goldberg, K.: A survey of research on cloud robotics and automation. IEEE Trans. Autom. Sci. Eng. 12(2), 398–409 (2015)
Koopman, B.O.: Hamiltonian systems and transformation in Hilbert space. Proc. Natl. Acad. Sci. 17(5), 315–318 (1931)
Korda, M., Mezić, I.: Linear Predictors for Nonlinear Dynamical Systems: Koopman Operator Meets Model Predictive Control. (2016) arXiv preprint arXiv:1611.03537
Krishnaprasad, P.S.: Geometry of Minimal Systems and the Identification Problem. Harvard University Press, Harvard (1977)
Kutz, J.N., Fu, X., Brunton, S.L.: Multiresolution dynamic mode decomposition. SIAM J. Appl. Dyn. Syst. 15(2), 713–735 (2016)
Lebanon, G., Mao, Y., Dillon, J.: The locally weighted bag of words framework for document representation. J. Mach. Learn. Res. 8(Oct), 2405–2441 (2007)
LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)
Lester, J., Choudhury, T., Borriello, G.: A practical approach to recognizing physical activities. In: International Conference on Pervasive Computing, pp. 1–16. Springer, Berlin (2006)
Ljung, L.: System identification. In: Procházka, A., Uhlí\(\tilde{\rm r}\), J., Rayner, P.W.J., Kingsbury, N.G. (eds.) Signal Analysis and Prediction. Applied and Numerical Harmonic Analysis. Birkhäuser, Boston, MA (1998)
Martin, R.J.: A metric for arma processes. IEEE Trans. Signal Process. 48(4), 1164–1170 (2000)
Mauroy, A., Goncalves, J.: Linear identification of nonlinear systems: a lifting technique based on the Koopman operator. In: CDC, pp. 6500–6505 (2016)
Mauroy, A., Hendrickx, J.: Spectral Identification of Networks Using Sparse Measurements (2016). arXiv preprint arXiv:1601.04364
Mauroy, A., Mezic, I.: Global Stability Analysis Using the Eigenfunctions of the Koopman Operator (2015). arXiv preprint arXiv:1408.1379
Mauroy, A., Mezić, I., Moehlis, J.: Isostables, isochrons, and koopman spectrum for the action-angle representation of stable fixed point dynamics. Phys. D: Nonlinear Phenom. 261, 19–30 (2013)
Maybeck, P.S.: Multiple model adaptive algorithms for detecting and compensating sensor and actuator/surface failures in aircraft flight control systems. Int. J. Robust Nonlinear Control 9(14), 1051–1070 (1999)
Mezic, I.: Spectral properties of dynamical systems, model reduction and decompositions. Nonlinear Dyn. 41(1–3), 309–325 (2005)
Mezic, I.: Analysis of fluid flows via spectral properties of the Koopman operator. Annu. Rev. Fluid Mech. 45, 357–378 (2012)
Mezic, I.: Spectral Operator Methods in Dynamical Systems: Theory and Applications (in preparation) (2017)
Mezić, I., Banaszuk, A.: Comparison of systems with complex behavior. Phys. D 197, 101–133 (2004)
Mezic, I., Surana, A.: Koopman mode decomposition for periodic/quasi-periodic time dependence. IFAC-PapersOnLine 49(18), 690–697 (2016)
Mezić, I., Wiggins, S.: A method for visualization of invariant sets of dynamical systems based on the ergodic partition. Chaos: Interdiscip. J. Nonlinear Sci. 9(1), 213–218 (1999)
Nelles, O.: Nonlinear System Identification: From Classical Approaches to Neural Networks and Fuzzy Models. Springer, Berlin (2013)
Niebles, J.C., Wang, H., Fei-Fei, L.: Unsupervised learning of human action categories using spatial-temporal words. Int. J. Comput. Vis. 79(3), 299–318 (2008)
Paoletti, S., Juloski, A.L., Ferrari-Trecate, G., Vidal, R.: Identification of hybrid systems a tutorial. Eur. J. Control 13(2), 242–260 (2007)
Pourbabaee, B., Meskin, N., Khorasani, K.: Sensor fault detection, isolation, and identification using multiple-model-based hybrid kalman filter for gas turbine engines. IEEE Trans. Control Syst. Technol. 24(4), 1184–1200 (2016)
Proctor, J.L., Brunton, S.L., Kutz, J.N.: Dynamic mode decomposition with control. SIAM J. Appl. Dyn. Syst. 15(1), 142–161 (2016)
Ravichandran, A., Chaudhry, R., Vidal, R.: Categorizing dynamic textures using a bag of dynamical systems. IEEE Trans. Pattern Anal. Mach. Intell. 35(2), 342–353 (2013)
Rowley, C., Mezic, I., Bagheri, S., Schlatter, P., Henningson, D.S.: Spectral Analysis of Nonlinear Flows. J. Fluid Mech. 641, 115–127 (2009)
Rubner, Y., Tomasi, C., Guibas, L.J.: The Earth mover’s distance as a metric for image retrieval. Int. J. Comput. Vis. 40(2), 99–121 (2000)
Sauer, T., Yorke, J.A., Casdagli, M.: Embedology. J. Stat. Phys. 65(3–4), 579–616 (1991)
Schmid, P.J.: Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 656, 5–28 (2010)
Sivic, J., Zisserman, A.: Video google: a text retrieval approach to object matching in videos. In: Proceedings of the Ninth IEEE International Conference on Computer Vision, 2003, pp. 1470–1477. IEEE (2003)
Solomon, J., Rustamov, R., Guibas, L., Butscher, A.: Earth mover’s distances on discrete surfaces. ACM Trans. Graph. 33(4), 67 (2014)
Sootla, A., Mauroy, A.: Operator-Theoretic Characterization of Eventually Monotone Systems (2015). arXiv preprint arXiv:1510.01149
Subramanya, A., Raj, A., Bilmes, J.A., Fox, D.: Recognizing Activities and Spatial Context Using Wearable Sensors (2012). arXiv preprint arXiv:1206.6869
Sugihara, G., May, R.M.: Nonlinear forecasting: an operational way to distinguish chaos from measurement error. Nature 344, 734–741 (1990)
Sugihara, G., May, R., Ye, H., Hsieh, C., Deyle, E., Fogarty, M., Munch, S.: Detecting causality in complex ecosystems. Science 338(6106), 496–500 (2012)
Surana, A.: Koopman operator based nonlinear dynamic textures. In: ACC, pp. 1333–1338 (2015)
Surana, A.: Koopman operator framework for observer synthesis for input–output nonlinear systems with control-affine inputs. In: IEEE CDC (2016)
Surana, A., Banaszuk, A.: Linear observer synthesis for nonlinear systems using Koopman operator framework. IFAC-PapersOnLine 49(18), 716–723 (2016)
Susuki, Y., Mezic, I.: Nonlinear Koopman modes and power system stability assessment without models. IEEE Trans. Power Syst. 29(2), 899–907 (2014)
Susuki, Y., Mezic, I., Hikihara, T.: Global swing instability in the New England power grid model. In: 2009 American Control Conference, pp. 3446–3451. IEEE (2009)
Susuki, Y., Mezic, I., Hikihara, T.: Coherent swing instability of power grids. J. Nonlinear Sci. 21(3), 403–439 (2011)
Takens, F.: Detecting strange attractors in turbulence. In: Dynamical Systems and Turbulence, Warwick 1980, pp. 366–381. Springer, Berlin (1981)
Tu, J.H., Rowley, C.W., Kutz, J.N., Shang, J.K.: Spectral analysis of fluid flows using sub-Nyquist-rate PIV data. Exp. Fluids 55(9), 1–13 (2014a)
Tu, J.H., Rowley, C.W., Luchtenburg, D.M., Brunton, S.L., Kutz, J.N.: On dynamic mode decomposition: theory and applications. J. Comp. Dyn. 2(1), 391–421 (2014b)
van der Maaten, L.J.P., Postma, E.O., van den Herik, H.J.: Dimensionality Reduction: A Comparative Review. Tilburg University Technical Report, TiCC-TR 2009-005 (2009)
Vapnik, V.N., Vapnik, V.: Statistical Learning Theory, vol. 1. Wiley, New York (1998)
Venkatasubramanian, V., Rengaswamy, R., Yin, K., Kavuri, S.N.: A review of process fault detection and diagnosis: part i: quantitative model-based methods. Comput. Chem. Eng. 27(3), 293–311 (2003)
Vidal, R., Soatto, S., Chiuso, A.: Applications of hybrid system identification in computer vision. In: Proceedings of the European Control Conference, Kos, Greece (2007)
Vishwanathan, S.V.N., Smola, A.J., Vidal, R.: Binet–Cauchy kernels on dynamical systems and its application to the analysis of dynamic scenes. Int. J. Comput. Vis. 73(1), 95–119 (2007)
Williams, M.O., Rowley, C.W., Kevrekidis, I.G.: A Kernel-Based Approach to Data-Driven Koopman Spectral Analysis (2014). arXiv preprint arXiv:1411.2260
Williams, M.O., Kevrekidis, I.G., Rowley, C.W.: A data-driven approximation of the Koopman operator: extending dynamic mode decomposition. J. Nonlinear Sci. 25(6), 1307–1346 (2015a)
Williams, M.O., Rowley, C.W., Mezić, I., Kevrekidis, I.G.: Data fusion via intrinsic dynamic variables: an application of data-driven koopman spectral analysis. Europhys. Lett. 109(4), 40007 (2015b)
Xu, A., Zhang, Q.: Nonlinear system fault diagnosis based on adaptive estimation. Automatica 40(7), 1181–1193 (2004)
Yen, G.G., Ho, L.-W.: Online multiple-model-based fault diagnosis and accommodation. IEEE Trans. Ind. Electron. 50(2), 296–312 (2003)
Acknowledgements
Funding provided by United Technologies Research Center is greatly appreciated. The author would like to thank Matthew Williams, Milos Ilak, and Andrzej Banaszuk for careful reading of the manuscript and valuable feedback.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Clancy Rowley and Ioannis Kevrekidis.
Rights and permissions
About this article
Cite this article
Surana, A. Koopman Operator Framework for Time Series Modeling and Analysis. J Nonlinear Sci 30, 1973–2006 (2020). https://doi.org/10.1007/s00332-017-9441-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00332-017-9441-y
Keywords
- Koopman operator
- Dynamical Systems and Control
- Machine learning
- Nonlinear time series modeling and analysis