Phase Separation Patterns from Directional Quenching | Journal of Nonlinear Science Skip to main content
Log in

Phase Separation Patterns from Directional Quenching

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

We study the effect of directional quenching on patterns formed in simple bistable systems such as the Allen–Cahn and the Cahn–Hilliard equation on the plane. We model directional quenching as an externally triggered change in system parameters, changing the system from monostable to bistable across a trigger line. We are then interested in patterns forming in the bistable region, in particular as the trigger progresses with small speed and increases this bistable region. We find existence and nonexistence results of single interfaces and striped patterns. For zero speed, we find stripes parallel or perpendicular to the trigger line and exclude stripes with an oblique orientation. Single interfaces are always perpendicular to the trigger line. For small positive speed, striped patterns can align perpendicularly. Other orientations are excluded in Allen–Cahn for all nonnegative speeds. Single interfaces for positive trigger speeds are excluded for Cahn–Hilliard and align perpendicularly in Allen–Cahn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Notice that this is not direct, since this function does not solve the PDE in the classical sense and distributions are applied to the space of smooth compactly supported functions. However, we know that distributions with finite order (say, order k) can be extended to the space of \({\mathscr {C}}_0^k\) functions (cf. Hörmander 1990, §2).

  2. Monotonicity in y is restricted to \(y\in [0,\kappa /2]\).

References

  • Berestycki, H., Diekmann, O., Nagelkerke, C.J., Zegeling, P.A.: Can a species keep pace with a shifting climate? Bull. Math. Biol. 71(2), 399–429 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Bouhours, J., Giletti, T.: Extinction and spreading of a species under the joint influence of climate change and a weak allee effect: a two-patch model. Preprint arXiv:org/abs/1601.06589 (2016)

  • Bouhours, J., Nadin, G.: A variational approach to reaction-diffusion equations with forced speed in dimension 1. Discrete Contin. Dyn. Syst. 35(5), 1843–1872 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Brezis, H.: Functional Analysis. Sobolev Spaces and Partial Differential Equations. Universitext. Springer, New York (2011)

    MATH  Google Scholar 

  • Chen, X., Lenhert, S., Hirtz, M., Lu, N., Fuchs, H., Chi, L.: Langmuirblodgett patterning: a bottomup way to build mesostructures over large areas. Acc. Chem. Res. 40(6), 393–401 (2007)

    Article  Google Scholar 

  • Dang, H., Fife, P.C., Peletier, L.A.: Saddle solutions of the bistable diffusion equation. Z. Angew. Math. Phys. 43(6), 984–998 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  • Droz, M.: Recent theoretical developments on the formation of Liesegang patterns. J. Stat. Phys. 101(1), 509–519 (2000)

    Article  MATH  Google Scholar 

  • Fife, P.C.: Models for phase separation and their mathematics. Electron. J. Differ. Equ. pages no. 48, 26 pp. (electronic) (2000)

  • Foard, E.M., Wagner, A.J.: Survey of morphologies formed in the wake of an enslaved phase-separation front in two dimensions. Phys. Rev. E 85, 011501 (2012)

    Article  Google Scholar 

  • Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order, volume 224 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Berlin, second edition (1983)

  • Goh, R., Scheel, A.: Oblique stripes in a triggered Swift-Hohenberg equation. Manuscript (2016)

  • Hale, J.K.: Ordinary Differential Equations, 2nd edn. Robert E. Krieger Publishing Co., Inc, Huntington (1980)

    MATH  Google Scholar 

  • Hörmander, L.: The Analysis of Linear Partial Differential Operators. I. Classics in Mathematics. Springer, Berlin, 2003. Distribution theory and Fourier analysis, Reprint of the second (1990) edition [Springer, Berlin; MR1065993 (91m:35001a)]

  • Jaramillo, G., Scheel, A.: Deformation of striped patterns by inhomogeneities. Math. Methods Appl. Sci. 38(1), 51–65 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Kato, T.: Perturbation Theory for Linear Operators. Classics in Mathematics. Springer, Berlin (1995). Reprint of the 1980 edition

  • Kolli, M., Schatzman, M.: Approximation of a semilinear elliptic problem in an unbounded domain. M2AN. Math. Model. Numer. Anal. 37(1), 117–132 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Krekhov, A.: Formation of regular structures in the process of phase separation. Phys. Rev. E 79, 035302 (2009)

    Article  Google Scholar 

  • Kpf, M.H., Gurevich, S.V., Friedrich, R., Chi, L.: Pattern formation in monolayer transfer systems with substrate-mediated condensation. Langmuir 26(13), 10444–10447 (2010)

    Article  Google Scholar 

  • Li, B., Bewick, S., Shang, J., Fagan, W.F.: Persistence and spread of a species with a shifting habitat edge. SIAM J. Appl. Math. 74(5), 1397–1417 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Liesegang, R.E.: über einige Eigenschaften von Gallerten. Naturwissenschaftliche Wochenschrift 111, 353–362 (1896)

    Google Scholar 

  • Lloyd, D.B., Scheel, A.: Continuation and bifurcation of grain boundaries in the Swift–Hohenberg equation. SIAM J. Appl. Dyn. Syst. (to appear)

  • Robbin, J., Salamon, D.: The spectral flow and the Maslov index. Bull. Lond. Math. Soc. 27(1), 1–33 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  • Sandstede, B., Scheel, A.: On the structure of spectra of modulated travelling waves. Math. Nachr. 232(1), 39–93 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Schatzman, M.: On the stability of the saddle solution of Allen-Cahn’s equation. Proc. R. Soc. Edinb. Sect. A 125(6), 1241–1275 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  • Thomas, S., Lagzi, I., Molnár, F., Rácz, Z.: Helices in the wake of precipitation fronts. Phys. Rev. E 88, 022141 (2013a)

    Article  Google Scholar 

  • Thomas, S., Lagzi, I., Molnár, F., Rácz, Z.: Probability of the emergence of helical precipitation patterns in the wake of reaction-diffusion fronts. Phys. Rev. Lett. 110, 078303 (2013b)

    Article  Google Scholar 

  • Vo, H.-H.: Persistence versus extinction under a climate change in mixed environments. J. Differ. Equ. 259(10), 4947–4988 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Zhu, J., Wilczek, M., Hirtz, M., Hao, J., Wang, W., Fuchs, H., Gurevich, S.V., Chi, L.: Branch suppression and orientation control of Langmuir-Blodgett patterning on prestructured surfaces. Adv. Mater. Interfaces 3(19), 1600478 (2016). doi:10.1002/admi.201600478

    Article  Google Scholar 

Download references

Acknowledgements

R.M and A.S. are grateful to the University of Münster, Germany, where part of this work is carried out. R.M. also would like to thank Itsván Lagzi and Zoltán Rácz from Ëotvos University, Hungary, for stimulating discussions. R.M. acknowledges financial support through a DAAD Research Grant. A.S. acknowledges partial support through NSF Grants DMS-1612441 and DMS-1311740.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Monteiro.

Additional information

Communicated by Mary Silber.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monteiro, R., Scheel, A. Phase Separation Patterns from Directional Quenching. J Nonlinear Sci 27, 1339–1378 (2017). https://doi.org/10.1007/s00332-017-9361-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-017-9361-x

Keywords

Mathematics Subject Classification

Navigation