Abstract
The equations of nonholonomic mechanics may be derived using a number of variational principles. This paper studies some of these principles from the contemporary geometric point of view, taking into account various bundle structures that are intrinsically present in the nonholonomic setting.
Similar content being viewed by others
Notes
Please note that, in terms of the fictitious quantities π i called “quasicoordinates” that are employed by some authors (Ehlers et al. 2005, Greenwood 2003, Neimark and Fufaev 1972, Papastavridis 2002, etc.), the components ζ i correspond to the quantities denoted in the aforementioned literature by δπ i.
Neimark and Fufaev use the operator d to represent differentiation with respect to time, not differentials.
References
Appell, P.: Traité de Mécanique Rationelle: Dynamique des Systèmes. Mécanique Analytique, 2nd edn. Gauthier-Villars, Paris (1904)
Arnold, V.I., Kozlov, V.V., Neishtadt, A.I.: Dynamical Systems III. Encyclopedia of Math., vol. 3. Springer, Berlin (1988)
Ashwin, P., Melbourne, I.: Noncompact drift for relative equilibria and relative periodic orbits. Nonlinearity 10, 595–616 (1997)
Ball, K., Zenkov, D.V., Bloch, A.M.: Variational structures for Hamel’s equations and stabilization. Proc. IFAC (2012, to appear)
Bloch, A.M.: Nonholonomic Mechanics and Control. Springer, Berlin (2003)
Bloch, A.M., Crouch, P.E.: Reduction of Euler Lagrange problems for constrained variational problems and relation with optimal control problems. In: The Proceedings of the 33rd IEEE Conference on Decision and Control, pp. 2584–2590 (1994)
Bloch, A.M., Krishnaprasad, P.S., Marsden, J.E., Murray, R.M.: Nonholonomic mechanical systems with symmetry. Arch. Ration. Mech. Anal. 136, 21–99 (1996)
Bloch, A.M., Marsden, J.E., Zenkov, D.V.: Quasivelocities and symmetries in nonholonomic systems. Dyn. Syst. 24, 187–222 (2009)
Cardin, F., Favretti, M.: On nonholonomic and vakonomic dynamics of mechanical systems with nonintegrable constraints. J. Geom. Phys. 18, 295–325 (1996)
Cartan, É.: La théorie des groupes finis et continus et la géométrie différentielle traitées par la méthode du repère mobile. Gauthier-Villars, Paris (1937)
Cendra, H., Marsden, J.E., Ratiu, T.S.: Geometric mechanics, Lagrangian reduction, and nonholonomic systems. In: Mathematics Unlimited—2001 and Beyond, pp. 221–273. Springer, New York (2001)
Chaplygin, S.A.: On the motion of a heavy body of revolution on a horizontal plane. Phys. Sect. Imp. Soc. Friends Phys., Anthropol. Ethnograph., Mosc. 9, 10–16 (1897a) (Russian). Reproduced in Chaplygin 413–425 (1954)
Chaplygin, S.A.: On some feasible generalization of the theorem of area with an application to the problem of rolling spheres. Mat. Sb. XX, 1–32 (1897b) (Russian). Reproduced in Chaplygin 434–454 (1954)
Chaplygin, S.A.: On a rolling sphere on a horizontal plane. Mat. Sb. XXIV, 139–168 (1903) (Russian). Reproduced in Chaplygin 72–99 (1949), and Chaplygin 455–471 (1954)
Chaplygin, S.A.: On the theory of the motion of nonholonomic systems. Theorem on the reducing factor. Mat. Sb. XXVIII, 303–314 (1911) (Russian). Reproduced in Chaplygin 28–38 (1949), and Chaplygin 426–433 (1954)
Chaplygin, S.A.: Analysis of the Dynamics of Nonholonomic Systems. Classical Natural Sciences, Moscow (1949) (Russian)
Chaplygin, S.A.: Selected Works on Mechanics and Mathematics. State Publ. House, Technical-Theoretical Literature, Moscow (1954) (Russian)
Cortes, J., de Leon, M., de Diego, D.M.: Geometric description of vakonomic and nonholonomic dynamics, comparison of solutions. SIAM J. Control Optim. 41, 1389–1412 (2003)
de León, M., Marrero, J.C., de Diego, D.M.: Vakonomic mechanics versus nonholonomic mechanics: a unified geometrical approach. J. Geom. Phys. 35, 126–144 (2000)
de León, M.: A historical review on nonholomic mechanics. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. a Mat. 106, 191–224 (2012). Available at doi:10.1007/s13398-011-0046-2
Do Carmo, M.D.: Riemannian Geometry. Birkhäuser, Boston (1992)
Dubrovin, B.A., Fomenko, A.T., Novikov, S.P.: Modern Geometry–Methods and Applications, Part I. Springer, Berlin (1992)
Euclid: Catoptrics (280 BCE)
Ehlers, K., Koiller, J., Montgomery, R., Rios, P.: Nonholonomic systems via moving frames: Cartan equivalence and Chaplygin Hamiltonization. In: Marsden, J., Ratiu, T. (eds.) The Breadth of Symplectic and Poisson Geometry, pp. 75–120. Birkhäuser, Boston (2005)
Euler, L.: De minimis oscillationibus corporum tam rigidorum quam flexililium, methodus nova et facilis. Comment. Acad. Sci. Imp. Petropolitanae 7, 99–122 (1734)
Euler, L.: Methodus inveniendi lineas curvas. Lausannae, Genevae, apud Marcum-Michaelem Bosquet & Socias (1744)
Euler, L.: Decouverte d’un nouveau principe de Mecanique. Mém. Acad. Sci. Berlin 6, 185–217 (1752)
Favretti, M.: Equivalence of dynamics for nonholonomic systems with transverse constraints. J. Dyn. Differ. Equ. 10, 511–535 (1998)
Fedorov, Y.N., Garciía-Naranjo, L.C., Vankerschaver, J.: The motion of the 2D hydrodynamic Chaplygin sleigh in the presence of circulation (2012). Preprint, available at arXiv:1201.5054
Pierre de Fermat: Letter to Coreau de la Chambre (1662)
Fernandez, O., Bloch, A.M.: Equivalence of the dynamics of nonholonomic and variational nonholonomic systems for certain initial data. J. Phys. A 41(34) (2008)
Fernandez, O., Bloch, A.M.: The Weitzenbock connection and time reparametrization in nonholonomic mechanics. J. Math. Phys. 52, 012901 (2011)
Grácia, X., Marín-Solano, J., Muñoz-Lecanda, M.C.: Some geometric aspects of variational calculus in constrained systems. Rep. Math. Phys. 51, 127–148 (2003)
Gauss, C.F.: Über ein neues allgemeines Grundgesatz der Mechanik. J. Reine Angew. Math. 4, 232–235 (1829)
Gelfand, I.M., Fomin, S.V.: Calculus of Variations. Dover, New York (2000)
Greenwood, D.T.: Advanced Dynamics. Cambridge University Press, Cambridge (2003)
Hamel, G.: Die Lagrange–Eulerschen Gleichungen der Mechanik. Z. Math. Phys. 50, 1–57 (1904a)
Hamel, G.: Über die Virtuellen Verschiebungen in der Mechanik. Math. Ann. 59, 416–434 (1904b)
Hamel, G.: Über nichtholonome systeme. Math. Ann. 92, 33–41 (1924)
Hamel, G.: Theoretische Mechanik. Eine Einheitliche Einfuehrung in die Gesamte Mechanik. Springer, Berlin (1949)
Hamilton, W.R.: On a general method in dynamics, Part I. In: Phil. Trans. R. Soc. Lond., pp. 247–308 (1834)
Hamilton, W.R.: On a general method in dynamics, Part II. In: Phil. Trans. R. Soc. Lond., pp. 95–144 (1835)
Hero of Alexandria: Catoptrics [c. 50]
Hertz, H.R.: Gessamelte Werke, Band III. Der Prinzipien der Mechanik in neuem Zussamenhange dargestellt. Barth, Leipzig (1894)
Hölder, O.: Über die principien von Hamilton und Maupertuis. Nachr. K. Ges. Wiss. Goettin., Math.-Phys., Kl. 2, 122–157 (1896)
Ibn al-Haytham: Book of Optics (1021)
Kirgetov, V.I.: On transpositional relations in mechanics. J. Appl. Math. Mech. 22, 682–693 (1958). Available at http://www.sciencedirect.com/science/article/pii/0021892858900091
Koiller, J.: Reduction of some classical non-holonomic systems with symmetry. Arch. Ration. Mech. Anal. 118, 113–148 (1992)
Kozlov, V.V.: Dynamics of systems with nonintegrable constraints I. Vestn. Mosk. Univ., Ser. I Mat. Mekh. 37(3), 92–100 (1982a)
Kozlov, V.V.: Dynamics of systems with nonintegrable constraints II. Vestn. Mosk. Univ., Ser. I Mat. Mekh. 37(4), 70–76 (1982b)
Kozlov, V.V.: Dynamics of systems with nonintegrable constraints III. Vestn. Mosk. Univ., Ser. I Mat. Mekh. 38(3), 102–111 (1983a)
Kozlov, V.V.: Dynamics of systems with nonintegrable constraints IV. Integral principles. Vestn. Mosk. Univ., Ser. I Mat. Mekh. 42(5), 76–83 (1987)
Lagrange, J.L.: Mechanique Analytique. Chez la Veuve Desaint (1788)
Levi-Civita, T., Amaldi, U.: Compendio di Meccanica razionale (1951)
Markeev, A.P.: Dynamics of a Body Being Contiguous to a Rigid Surface. Nauka, Moscow (1992)
Marsden, J.E., Ratiu, T.S.: Introduction to Mechanics and Symmetry. Springer, Berlin (1994)
Maruskin, J.M.: Introduction to Dynamical Systems and Geometric Mechanics. Solar Crest Publishing, San José (2012)
Maruskin, J.M., Bloch, A.M.: The Boltzmann–Hamel equations for optimal control. In: Proceedings of the 46th IEEE Conference on Decision and Control, pp. 554–559 (2007)
Maruskin, J.M., Bloch, A.M.: The Boltzmann–Hamel equations for the optimal control of mechanical systems with nonholonomic constraints. Int. J. Robust Nonlinear Control 21, 373–386 (2011)
Maupertuis: Lois du Repos de L’Acad. Royale des Sciences de Paris (1740)
Neimark, Ju.I., Fufaev, N.A.: On the transpositional relations in the analytical mechanics of nonholonomic systems. J. Appl. Math. Mech. 24, 1541–1548 (1960)
Neimark, Ju.I., Fufaev, N.A.: Dynamics of Nonholonomic Systems. Translations of Mathematical Monographs, vol. 33. AMS, Providence (1972)
Papastavridis, J.G.: Analytical Mechanics. Oxford University Press, London (2002)
Poincaré, H.: Sur une forme nouvelle des équations de la mécanique. C. R. Acad. Sci. 132, 369–371 (1901)
Routh, E.J.: Treatise on the Dynamics of a System of Rigid Bodies. MacMillan, London (1860)
Rumiantsev, V.V.: On Hamilton’s principle for nonholonomic systems. J. Appl. Math. Mech. 42, 407–419 (1978)
Schouten, J.A.: Tensor Analysis for Physicists. Clarendon Press, Oxford (1951)
Suslov, G.K.: On a particular variant of d’Alembert’s principle. Mat. Sb. 22, 687–691 (1901)
Suslov, G.K.: Theoretical Mechanics, Technical/Theoretical Literature (Gostehizdat), Moscow (1946)
Vierkandt, A.: Über gleitende und rollende Bewegung. Monatshefte Math. Phys. III, 31–54 (1892)
Voronets, P.: On the equations of motion for nonholonomic systems. Mat. Sb. 22, 659–686 (1901)
Walker, G.T.: On a dynamical top. Pure Appl. Math. Q. 28, 175–184 (1896)
Zenkov, D.V., Leok, M., Bloch, A.M.: Hamel’s formalism and variational integrators on a sphere. Proc. IFAC (2012, to appear)
Acknowledgements
We would like to thank the National Science Foundation for support and the reviewers for their helpful comments.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by P. Newton.
Rights and permissions
About this article
Cite this article
Maruskin, J.M., Bloch, A.M., Marsden, J.E. et al. A Fiber Bundle Approach to the Transpositional Relations in Nonholonomic Mechanics. J Nonlinear Sci 22, 431–461 (2012). https://doi.org/10.1007/s00332-012-9144-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00332-012-9144-3